
r ------------------.. .... .... ........."I I

. II~ ~2%I

.. anid U ~ ~ ULU

. . TECHNICAL REPORT
I i

NO. 13073 II I

EVALUATION OF A SOFTWARE DESIGN APPROACH
(DEVELOP A THREAT RESOLUTION MODULE IN Ada)

'CONTRACT NO. DAAE07-83-C-R056I

I 5 MARCH 1985

II

-' ,I by S.J. WERSAN, M.T.MINOGUE
JL DALMO VICTOR OPERATIONS

Bell Aerospace I

S I 1515 Industrial Way
Belmont, California 94002
Tel. (415) 595-1414 1

U.S. ARMY TANK-AUTOMOTIVE COMMAND R-3811-10968A
RESEARCH AND DEVELOPMENT CENTER
Warren, Michigan 48090

Reproduced From
Best Available Copy



NOTICES

The findings in this report are not to be construed as an official
Department of the Army position.

Mention of any trade names or manufacturers in this report shall
not be construed as advertising nor as an official endorsement or
approval of such products or companies by the U.S. Government.

This report consists mainly of information researched from material
in the public domain plus developmental techniques originated by
Dalmo Victor under the subject contract. However, the Operating
System software used on the workstations and the Ada code compiler
must remain proprietary to the commercial developer and vendor,
Callan Data Systems (AT&T UNIX) and TeleSoft Corporation (Ada
Compiler for the MC68000 under UNIX), respectively.

Destroy this report when it is no longer needed. Do not return to
the originator.

i I !



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

DD-254 dated 8 November 1984 Approved for public release; distribution
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE unl i mi ted

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

R-3811-10968A 13073

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATIONDalmo Victor-Textron (If applicable) U.S. ARMY TACOM R & D Center -

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

1515 Industrial Way Warren, Michigan 48090
Belmont, California 94002

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

AMSTA-ZSC DAAE07-83-C-R056
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Warren, Michingan 48090 PROGRAM PROJECT TASK WWORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

Evaluation of a Software Design Approach: Develop a Threat Resolution Module in AdaR.

12. PERSONAL AUTHOR(S) Wersan, Dr. Stephen J. , Minogue, Marie T., Simmen, Robert L.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Final FROM 4-83 to 11-84 1985, March 5 118

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

" FIELD GROUP SUB-GROUP Data Fusion, Run Time Software Applications, AdaR Higher
7 02 Order Language, Threat Resolution, UNIX Operating System,

Multispectral Sensor Integration
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The Vehicle Integrated Defense System (VID) incorporates several packages of application
software written in AdaR. This report describes the preliminary design and code generation
of one of the critical packages, the Threat Resolution Module (TRM). The necessary logic
design, table, and file creation and other tasks to implement a preliminary TRM was
accomplished. All programming was written in the DOD standard Higher Order Language of
AdaR. Work was done on the UNISTAR 200 workstation hosting an AdaR Compiler developed by
TeleSoft Corporation and targeting the MC68000 microcomputer. The operating system for the
software development was UNIX. This report describes the feasibility of the VIDS-DMS
software design approach by discussing the three principal topics of:

1. Software algorithm design technology
2. Code generation, edit, and debug using AdaR as the PDL
3. Test of the preliminary TRM on a skeleton operating system (testbed)
(continued on Page 2)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

FX1lUNCLASSIFIED/UNLIMITED 13 SAME AS RPT. E3 DTIC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Dr. Francis B. Hoogterp (313)574-6693 AMSTA-ZSC
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete. Uncl assified
1



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

The annotated source code of the software as well as the object code for the TRM is
delivered under separate cover with this report to TACOM. This data, in conjunction
with the "lessons learned" during the experimental development project form the baseline
for continued development of the VIDS-DMS Feasibility Demonstration Model software.

A

2 Unclassified
SECURITY CLASSIFICATION OF THIS PAGE



SUMMARY. Work was carried out which demonstrated the feasibility of Ada
Higher Order Language (HOL) as a Program Design Language (PDL) for the
Vehicle Integrated Defense System - Data Management System (VIDS-DMS).

A preliminary, non-real time version of a specific application package of
the VIDS-DMS, the Threat Resolution Module, was designed, written, coded,
debugged, and tested. This demonstrated the ability of Ada HOL and the Ada
PDL environment to support the development of a multisensor integration
program.

The Threat Resolution Module (TRM) is the critical application package of
the VIDS-DMS in that it is responsible for detection, tracking, correlation,
and reaction decision functions. All other application modules to be
"developed in Phase III are subordinate to the TRM.

Once the complex nature of the language was mastered, it was an efficient
method of organizing file structures and designing the overall program.
Structured English provided great visibility and ease of demonstration.
Multiuser workstations operating under the UNIX operating system proved
effective even though the Ada compiler was not a complete implementation.
Workarounds resulted in operable code which could be tested and demon-
strated on a standalone testbed developed on this project for this purpose.

Lessons learned and recommendations for further development are included in
the report with examples of the structured English source documents which
yielded the Ada operational code targeted to the MC68000 microprocessor.
These lessons will be applied toward the creation of a real-time version of
the Threat Resolution Module and the rest of the VIDS software suite in the
succeeding stages of the VIDS Program.

Ada 0 is a registered trademark of the U.S. Department of Defense.
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1.0. INTRODUCTION

This report describes the results of an experimental software design and
develpment program for the TACOM Vehicle Integrated Defense System by
Dalmo Victor-Textron under Contract No. DAAEO7-83-C-R056. The heart of the
VIDS is its Data Management System (DMS) which processes information from
the threat detection sensors and then initiates the best reaction to counter
the threat. The key element of the DMS software is the Threat Resolution
Module which accepts the raw sensor output and detects, classifies, and
prioritizes the threats. The work presented here will contribute to the
enhancement of modern armored vehicle survivability and thus increased
effectiveness, particularly in an environment of a numerically superior
opposition.

The need for this segment of the program was brought about by the (then)
lack of experience by anyone in industry or the government with the re-
quirements for:

o Multispectral sensor integration, and

o Real time processing of application software written in the Ada
Higher Order Language.

Thus, the project set about to prove the feasibility of not only developing
algorithms for the necessary tracking and correlation of threat sensors,
but also the efficacy of coding the algorithms using the new DOD standard
Ada as the programming design language.

Such algorithms have since been developed, written in Ada, coded, and
tested. The results accompany this technical report. Program development
was carried out on a Callan Data Systems Workstation in which the host pro-
cessor is an MC68000 CPU. Testing was demonstrated in which the object
code is targeted on the MC68000 CPU. This Threat Resolution Module is a
preliminary of the eventual TRM algorithm(s) to be developed for the VIDS
Data Management System (VIDS-DMS) and has shown the difficulties and the
promises of Ada and the MC68000 as realtime multitasking software and hard-
ware.

2.0. OBJECTIVES

The overall objective of this project was to experimentally evaluate a key
software module. To meet this objective, the contractor did the necessary
logic design, table, and file creation and other tasks to implement a pre-
liminary VIDS-DMS Threat Resolution Module (TRM) to meet the general in-
tent of Section 3.3.2.8 of the VIDS-DMS FDM Specification as described in

s Dalmo Victor Report No. R-3710-10307. To accomplish this task, the follow-
ing specific objectives were met:
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o Preliminary TRM designed.

o The TRM code was tested to demonstrate its operation.

o Programming was carried out in Ada Higher Order Language using
the UNISTAR/UNIX operating system software development workstation,
hosting an Ada compiler supplied by TeleSoft Corporation.

o Testing of the TRM was carried out with the Dalmo Victor Threat
Engagement Scenario Simulator Model dedveloped in 1982 on IR & D
funds.

o Documentation was carried out and delivered per the Statement of
Work.

This report provides the following information on the project:

o Description of the technical effort

o Discussion of lessons learned during the development

o Annotated descriptions of the source code

o Results of TRM development on a 5-1/4-inch floppy disk.

Since the TRM is a subset of the overall DMS software and must operate in
the absence of the eventual sensors and the DMS Operating System Executive,
we also describe the deviations expected between this TRM and the eventual
TRM used in the FDM. Additionally, since the TRM must be tested in the
absence of the actual DMS operating system, a special TRM testbed was deve-
loped for test of the preliminary TRM. This testbed was based on the UNIX
operating system and was programmed in Ada using the partial Ada compiler
developed by TeleSoft. Commentary on this incomplete compiler and the
expectations for Phase III work using all facilities of a fully-validated
compiler from TeleSoft are also provided in the Recommendations section of
the report.

An illustration of the overall software development operation and the Ada
programming workstation on which the TRM and the Engagement Model are
hosted are shown in Figure 2-1.

10
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3.0. CONCLUSIONS

Ada HOL is a feasible Programming Design Language. Once the complexities
of the language are mastered, it is simple to write and debug code. It is
appears to be a good implementation language once a satisfactory develop-
ment environment is established.

Ada programs are easier to code and debug than other higher order languages
(FORTRAN, COBOL, PL/M) and should facili-tate development of larger pro-
grams. They should also live up to expectations of ability to redesign and
recode in the field. Although there is no proof of this, there is evidence
based on the experience of several people working on parts of the same
module showing reliable interchange-ability of sequential versions of code.

We have successfully developed a preliminary model of the Threat Resolution
Module which serves as a baseline for the nucleus of the software applica-
tion package for the FDM VIDS-DMS.

The software program and support structure is a workable model. It is
flexible, trainable (if trainee has sufficient structured programming
experience) and can be adapted to other projects through a revision of the
application modules as appropriate to the functional requirements of the
new system.

A more complete set of software development tools is required. Especially
useful would be a tool to keep track of dependencies of modules. This tool
must distinguish between the specification and body of a package.

Future Ada programmers should be well schooled in the full language not
only syntax.

There were problems in the development of the present software, but these
were not due to the Ada language or the VIDS-DMS system for the most part.
One source of difficulty beyond our control was the incomplete nature of
the TeleSoft Ada compiler, a pre-validation release. Particularly missed
were the Ada features dealing with "generics" and the complete set of
features concerned with "tasking."

Several workaround techniques were necessary and inefficiencies resulted in
significant stretch-out of the project schedule. These inefficiencies will
be eliminated when the completely validated Ada compiler is employed on
future programming activities.

Our use of the language at this point has proven that we must carefully
evaluate Ada features and abilities when making design decisions.

12



4.0 RECOMMENDATIONS

A. Continue development of VIDS-DMS software using the modified
family tree structure in Figure 5-2.

B. Get a mature compiler that permits compiling a package body
separately from its specification (separate compilation feature).

C. Study features of Ada "tasking" and attempt to transfer TRM
algorithms into tasks during Phase III development.

D. Eliminate KLUDGE software by using full Ada compiler imple-
mentation.

E. Use Ada "generic" routines in Phase III to take advantage of
strong type characteristics of Ada. Reduce volume of source code
by declaring program templates.

F. Enforce rule of avoiding the "Use" statement thereby reducing con-
fusion to programmer during debug and program maintenance.

G. Place an exception handler in all subprograms and packages and add
block to all I/0 requests so that exception handler can be in-
cluded.

H. Develop a more complete set of software development tools.
Especially useful would be a tool to keep track of dependencies of
modules. This tool must be able to distinguish between the speci-
fication and body of a package.

I. School future Ada programmers well in the full language; not only
syntax.

J. Use "No Break" (UPS) power supplies when using small standalone
software development workstations with high capacity Winchester
hard disks.

13
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5.0. DISCUSSION

5.1. Overview

Three issues of technical consideration were addressed:

o Software design methodology

o Code generation, edit and debug using Ada

o Test of the TRM on a skeleton operating system or testbed

These issues form the basis of the investigation of this project and are
discussed in this section.

An overview of the Risk Reduction software development for VIDS-DMS is
illustrated in Figure 5-1. (The overall VIDS-DMS FDM software family tree
is shown for reference only in Figure 4-1.) Description of the principal
processes of the TRM are presented in Section 5-1 as are descriptions
of the nature of static and dynamic file generation. Section 5-2 describes
the actual practice and lessons learned in Ada code generation while
Section 5-3 describes the testbed and the TRM.

The detailed source code listings resulting from this development are
attached as an Appendix to this report. The actual source and object code
is delivered on magnetic media (5-1/4-inch floppy disk) under separate
cover as CLIN 0003.

5.1.1. Testbed Software System Overview. The testbed provides the opera-
ting environment for the TRM necessary to support the proper execution of
the TRM. It provides the mechanism to supply data to the TRM and accepts
the output from the TRM. Other support packages of the testbed provide
data definitions and a time simulator. This section gives an overall des-
cription of the testbed and its interface with the TRM. A more detailed
description of the testbed module is supplied in Section 5-4.

The testbed was designed to consist of three major categories of packages -

one category for library functions and declarations, one for utility func-
tions used by individual processes, and one for processes and subprocesses.
The structure of the packages is shown in Figure 5-2.

5.1.1.1. Library Packages.

a. Mathematical Library. The mathematical library included the mathema-
tical functions for statistics and trigometry. These functions are general
purpose and could be released by any Ada software. We successfully re-
ported these routines from the environment model TESS to the VIDS testbed
development. The mathematical library consisted of the following modules:
MATH TYPES, ELEMFUNC, STATFUNC, and TRIGFUNC. Each module is described
in the following text:

15
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o MATH TYPES - Defines commonly used type declarations which support
the mathematical library functions found in the other modules.
This module is accessed by all other mathematical modules.

o ELEM FUNC - Declares elementary mathematical functions such as
square root, log, minimum and maximum. These functions all
operate on floating point numbers and return floating point num-
bers.

o STAT FUNC - Defines probability functions for the normal distribu-
tion and a random number generator. This routine is used by the
environment model TESS. The module is not a part of the testbed
and need not be compiled with the testbed.

o TRIG FUNC - Defines the trigometric function for sine, cosine,
and arctangent. It also defines the constants for pi/2, degrees
per radian, and radians per degree.

b. Common Data Type Library. This library consists of the declarations
of the commonly used types in the testbed. It is broken up into three sub-
packages: GENTYPES, SIPPACK, and REAC_ TYPES. These packages are des-
cribed in this section.

NOTE: Due to a compiler restriction, we are forced to group GEN TYPES and
SIPPACK into one package called TYPELIBRARY.

o GEN TYPES - Defines miscellaneous data types for the VIDS testbed.
Thi- includes definitions for the SENSOR TYPES, EMITTERTYPES and
the numerical types for degrees and meters.

o SIP PACK - Defines the sensor input packet (SIP) for the input
data. It also includes the definition of the INPUT DATA BLOCK
used to transfer the input data from one testbed module to another.

o REAC TYPES - Defines the data types concerned with reaction
decision and management. This also includes the definition of
the THREAT INFORMATIONBLOCK used to transfer the results of the
TRM processing to other testbed modules.

c. Time Library. This package contains the definitions of the type for
time and the legal functions that can be done on objects of type time.
These functions include addition, subtraction, and comparison of two time
varibles. It also includes multiplication of a floating point number to a
time variable. The following utility functions are defined:

o GET TIME and PUTTIME - Provide input/output routines for time
varTables.

o CONVERT TO TIME - Converts a floating point or integer number to a
time value.

18



o NEXT SECOND - Returns a time equal to the next whole second based
on tihe time argument passed to the function.

o WHOLE SECONDS - Returns a time equal to the whole second portion
of the input time.

o FRACTIONAL SECONDS - Returns a time equal to fractional portion
of the input time.

5.1.1.2. Utility Packages. The utility packages are used to group sub-
processes into smaller, more manageable pieces as well as to create a data-
base management module which declares the data type and its operations.
This aided in the integration and debug because it reduced compile time.
The TRM and the INPUT BUS SIMULATOR both used utility packages. The other
processing modules did not require them. The utility packages are des-
cribed in the discussions of the TRM and INPUT_ BUSSIMULATOR. These
packages are listed in Table 5-1.

5.1.1.3. Processes and Subprocesses Package. The process and subprocesses
constitute the major subsections of the testbed and TRM. These processes
are illustrated in Figure 5-2. The main processing unit is the OPERATIONAL
EXECUTIVE. It is responsible for all scheduling of all other processes and
initializing the system. The remainder of processes shown in the figure
are subprocesses to operational executive. The TRM is a drop-in module
called by the OPERATIONAL EXECUTIVE which supplies the data and all parame-
ters required. The INPUT-BUS SIMULATOR reads the SIP FILES and passes SIPs
to the OPERATIONAL EXECUTIVE at the appropriate polling times. The CLOCK
TIME MANAGER provides a pseudo clock and increments time. The REACTION
MANAGEMENT module provides the mechanism for reporting the results from-the
TRM. Each of these modules is described more fully in Section 5-1 (TRM)
and Section 5-3 (Testbed).

5.2. VIDS Phase II Software Documentation

5.2.1. Introduction and Overview of Dynamic Data File. The purpose of
this section is to introduce the structures, contents, terminology and
routines connected with the internal, dynamic data files of the VIDS Phase
II software. The design of the Phase II Threat Resolution Module (TRM) is
centered about these data structures and their contents. So, this section
of the documentation should be read before delving into the lower-level
details of the TRM's constituent routines. The file handling routines to
be discussed below are, of course, a part of these constituent routines,
but deal with a level of detail that has little to do with the TRM's
functional purposes, and are best understood via graphic rather than
verbal illustration.

There are three principal types of internal, dynamic data files created and
maintained by the TRM. These are the Threat Tracking Files (TTF), the
Threat Correlation Files (TCF) and the Prioritized Threat List (PTL). The
basic data types used to define and refer to these file types and to their
components are exported from package TRMTYPES (file name: trm types.text).

19



Table 5-1. Utility Packages

PARAGRAPH
WHERE MEMBER OF

PACKAGE NAME DISCUSSED PAGE PACKAGE SYSTEM FILE NAME

AGE IN PACK 5.2.3.5. 87 AGIN PACK.TEXT
AGO PACK 5.2.3.7. 96 AGO PACK.TEXT
BUFFER INFO 5.4.5.3. 107 BUFFER BUFF.TEXT
BUFFER SUPPORT 5.4.5.4. 107 BUFFER BUFF.TEXT
BUFFER-PACK 5.4.5.5. 107 BUFFER BUFF.TEXT
CLOCK TIME MANAGER 5.4.7. 107 CLOCK.TEXT
CORRELFILE 5.2.1.2. 35 DATAFYLZ DATAFYLZ.TEXT
CORR PACK 5.2.3.4. 77 CORR-PACK.TEXT
CREC HANDLER 5.2.1.5. 48 DATA FYLZ DATAFYLZ.TEXT
DEBU- AIDS 5.4.9.2. 108 DEBUG TOOL DBUG-TOOL.TEXT
DUMP PACK 5.4.9.4. 108 DEBUGTOOLS DBUG-TOOL.TEXT
ELEM FUNC 5.4.2.2. 105 ELEMFUNC.TEXT
EMITTER SETS 5.2.3.8. 98 SETS PACK SETS PACK.TEXT
ENUM 10- 5.4.9.1. 108 DEBUG TOOLý DBUG-TOOL.TEXT
GEN TYPES 5.4.3.1. 105 TYPE TYPELIB.TEXT

LIBRARY
INPUT BUS SIMULATOR 5.4.6. 107 INPUT BUS.TEXT
MATH TYPES 5.4.2.1. 105 MATH TYPES.TEXT
OPERATIONAL EXECUTIVE 5.4.11. 109 OP EX.TEXT
POLL PACK 5.4.5.1. 107 POLL PACK.TEXT
PRINT PACK 5.4.9.3. 108 DEBUG TOOLý DBUG-TOOL.TEXT
PRIOTHLIST 5.2.1.3. 44 DATA FYLZ DATA-FYLZ.TEXT
REACTION MANAGEMENT 5.4.8. 108 REAC MAN.TEXT
REAC PACK 5.1.1.1. 18 NEWTRM NEW TRM.TEXT
REAC TYPES 5.4.3.3. 106 REAC TYPES.TEXT
SENS0-R SETS 5.2.3.8. 98 SETS PACK SETS_-PACK.TEXT
SET UP 5.4.10.1. 108 TUNEUP TUNE-UP.TEXT
SIP-INPUT PACK 5.4.5.2 107 BUFFER BUFFER.TEXT
SIP-PACK 5.4.3.2. 106 TYPE TYPELIB.TEXT

LIBRARY
STATIC DATABASE 5.2.2. 50 ST DATA.TEXT
STDB MAINTENANCE 5.4.10.2. 109 TUNEUP TUNE UP.TEXT
STAT-FUNC 5.4.2.4. 105 STAT FUNC.TEXT
THREATFILE 5.2.1. 19 DATAFYLZ DATA FYLZ.TEXT
TIME PACK 5.4.4.1. 106 TIME-PACK.TEXT
TRACK AIDS 5.2.3.3. 62 TRACK AIDS.TEXT
TRACK PACK 5.2.3.3. 62 NEWTRM NEW T-RM.TEXT
TRIG TUNC 5.4.2.3. 105 TRIG FUNC.TEXT
TRM PACK 5.2.3.1. 58 NEWTRM NEW TRM.TEXT
TRM TYPES 5.2.3.1. 58 TRM-TYPES.TEXT
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Table 5-1. Utility Packages (Cont'd)

NOTE ON FILE STRUCTURE:

Each package is stored in a file of the same name. Due to a bug in the
TeleSoft Compiler which only allows approximately 31 modules to be grouped
into a single executive run, it wa necessary for us to group the packages
into larger packages. The membership of the elemental packages in one of
these larger packages is indicted in the third column of Table 5-1. An
empty entry in this column means that the package was not concatenated
into a super package.
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The three file types are not independent of one another, but are for various
purposes linked together to form larger structures.

The routines used to handle the three file types are found in separate
packages as follows:

FILE TYPE Ada PACKAGE FILE NAME

Threat Tracking Files THREATFILE thrtfile.text
Threat Correlation Files CORRELFILE corrfile.text
Prioritized Threat List PRIOTHLIST priolist.text

There is, in addition, a fourth package named CREC HANDLER (file name:
crec hdlr.text) which handles a subsidiary file type, the correlated item
record (CREC), which is a subsection of a TCF record.

Many of the routines found in the three principal packages are carbon
copies of each other, and indeed, would have been coded using Ada generics
had that ability been available in the compiler used in this phase of the
project.

Paragraph 1 introduces the doubly-linked ring structure used to implement
each of the three principal file types. This paragraph also discusses the
initialization of the reservoir of available file blocks maintained for
each of the three file types. Paragraph 2 discusses the larger structures
built up out of the basic three file types, illustrating these larger
structures graphically and explaining their functional significance.

Paragraph 3 reviews the component fields of each of the three file types,
explaining each component's function and giving an excerpt from the TRM
code illustrating a typical usage of the given component field. Paragraph
4 deals with the four file handler packages listed above, emphasizing both
the commonality of many of the procedures/functions provided and their
significant differences. Paragraph 5 discusses lessons learned about Ada
during Phase II with respect to the software covered by this section.

5.2.1.1. Doubly-Linked Ring Structures.

a. Basic Structure and Rationale. Each of the three principal file
types is maintained as a doubly-linked ring. The salient features of such
a structure as shown in Figure 5-3 are:

o The file as a whole consists of a number of (file) blocks, areas
of contiguous memory that are, for a given file type, of uniform
length;

o Subfiles are created by linking file blocks whose internal fields
can be used to adduce some sort of useful association, for ex-
ample, all file blocks that pertain to a particular sensor, stored
in ascending azimuth order;
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o Each block contains a pair of pointers, a forward pointer and a
backward pointer. The forward pointer within a given block points
to its successor, and its backward pointer points to its prede-
cessor;

o Three blocks are distinguished; these are the ROOT block, the HEAD
block and the TAIL block. The root block is allocated once at the
beginning of program execution, during the elaboration of a given
file type's handler package, and is never allowed to disappear.
The head block is the successor of the root, and the tail block is
the predecessor of the root.

Having given this brief summary of the doubly-linked ring, we need to cor-
rect some over-simplifications and fill in some detail. Actually, as shown
in Figure 5-4, a block contains an indexable list (array) of forward/back-
ward pointer pairs. There is one such pair for each useful association
required for a given file type. The orderings chosen in the present im-
plementation are:

TTF: Ascending azimuth order within a sensor type;

Descending lethality order over all sensor types.

TCF: Descending lethality order over all sensor types.

PTL: Time of arrival order over all sensor types;
Descending lethality order over all sensor types.

The time of arrival ordering of the PTL means that the most recent PTL is
in the head block and the oldest in the tail block. In all other orderings,
ascending/descending refers to the forward direction around the ring.

Each of the orderings shown requires a root block. Accordingly, the PTL
has two root blocks, the TCF has one and the TTF has seven: one for the
lethality ordering and one for each of the six sensor types (see Figure
5-5). These root blocks are not referred to directly, but as shown in both
Figures 5-3 and 5-5, each root block is accessed via its root block
pointer which is an Ada access type object.

Further, the root blocks are an implementation detail that are of no con-
cern to the TRM user routines. The usual practice is to first verify that
the desired ordering is not empty (an empty ordering consists of a root
block pointing to itself -- (see Figure 5-3), and then obtain pointers to
the ordering's head and tail blocks. These pointers are the only useful
part of a root block; no other information is stored in the fields of a
root block. This is somewhat wasteful of space, in that assembly language
versions of doubly-linked rings define the equivalent of the root block as
consisting only of the pointers, but it is required by Ada's strong typing:
all the pointers for a given file type are of the same Ada access type,
namely pointers to the file blocks of the file type. A root block consis-
ting only of pointers would not be of the same type as the usual file block
and thus the forward pointer of the tail block and the backward pointer of
the head block could not point to it, without the messy inconvenience of
variant records or the subterfuge of unchecked conversion.
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ROOT BLOCK PTRS ROOT BLOCKS

PR IOROOT

LETHALITY (PRIORITY)
ORDERING

SENSOROOT
LASER low.

NIS --
OPTICALpM

MM-WAVE

NBC 'AZIMUTH WITHIN

SENSOR ORDERING

Figure 5-5. A Root Block for Each Ordering. Example Shown Pertains to TTF.
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This design choice, i.e., not allowing the root blocks to introduce an
inconvenient exception, is quite in keeping with the rationale for choosing
the doubly-linked ring structure in the first place. Maintaining a file in
some specific order means that a block will sometimes have to be severed
from its current position and moved to a different position. The doubly-
linked ring permits this to be done with minimal exceptions: the rules for
removing a block from a ring are the same no matter where (head, tail, or
middle) that block is and without regard to whether or not the ring has
only one block on it (is a "singleton"). Similarly, the rules for adding a
new block to a ring are the same for an empty ring or a singleton and with-
out regard for position in a non-trivial ring. The sole exception is that
nothing may be removed from an already empty ring, i.e., the root block
will be protected.

By way of comparison, the correlated item record handler (CREC HANDLER)
does many of the same functions as the three principal handlers. The file
structure deemed apropriate here was not the doubly-linked ring, but a
doubly-linked chain structure in which the forward pointer in the tail
block points to nothing (is null) and the same for the backward pointer in
the head block. This is illustrated in Figure 5-6. The FREE ONE function
in CREC HANDLER which corresponds to the DETATCH function of the other
three handlers recognizes five separate cases: chain already empty, de-
taching a singleton, detaching chain head, detaching chain tail and detach-
ing a middle item. DETATCH recognizes only two cases: ring empty and all
other situations; the code required to implement all other situations con-
sists of essentially the same two lines that FREEONE uses for its last
case alone.

b. Initialization. A full-capability, validated Ada compiler provides
facilities for dynamic allocation and deallocation of storge. Thus, during
the elaboration (execution of initialization code) of package THREATFILE,
having declared PRIOROOT to be an access variable (pointer) to a TTF REC
(file block for TTF), i.e., of type TTF PTR, we use the Ada allocator
'new' to create the permanent root block for the TTF priority ordering with
the following code statement:

PRIOROOT: = new TTFREC;

The key word here is "permanent." The root blocks persist throughout the
TRM's execution and are never deallocated. By contrast, the ordinary file
blocks making up the bulk of the dynamic files must be OBTAINed when needed
and DELETEd when no longer needed. Since the developmental version of the
compiler that was used in developing the Phase II software has the facility
for dynamic allocation illustrated above, but does not have the correspon-
ding facility for dynamic deallocation, we were compelled to provide our
own functional allocation and deallocation scheme. This scheme, which is
used in the three principal handlers and in the CREC HANDLER, is illustra-
ted in Figure 5-7 through 5-11 for the TTF blocks created and handled by
package THREATFILE.

The gist of our allocation/deallocation scheme is as follows: during ela-
boration of all four packages, a fixed number of file blocks is created
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using the Ada allocator 'new.' These blocks are hung on a unidirectional
chain whose chain starter is named 'AVAILABLE' via a code segment such as
the following taken from CREC_ HANDLER:

-- AVAILABLE is initially null
-- TEMP, AVAILABLE and the NEXT field of a COR REC are
-- all of type COR PTR which is access COR REC

for I in 1..THREATFILE.POOL SIZE loop
TEMP : AVAILABLE;
AVAILABLE • = new TRM TYPES.CORREC;
AVAILABLE.NEXT : TEMP;

end loop;

The result of this loop's execution is shown in Figure 5-7.

To allocate a file block during TRM execution, one calls a procedure named
OBTAIN (Figure 5-8) which returns the current value of AVAILABLE (pointer
to the next available unused block if not = null. This value will be null
if the last previous call on OBTAIN (for this block type) used the last
available block; the user must interpret this null return as an indication
that there are no more blocks available-see remark below. If this situa-
tion arises, then OBTAIN does nothing further, otherwise AVAILABLE is reset
to the contents of the available chain pointer field of the block (e.g.,
the NEXT field in the above example). Since a TCF block is OBTAINed when a
fresh correlation has been discovered between two TTFs, procedure CORREL-
FILE.OBTAIN also calls CREC HANDLER.OBTAIN to obtain two CORREC blocks to
represent the two TTFs being correlated. These COR REC blocks are attached
to the chain starters which are contained in the TCF block being OBTAINed
(see Figure 5-7).

To deallocate a file block during TRM execution, one calls a procedure
named DELETE. This procedure uses of other handler procedures to first
DETATCH the block from its current ring connections, after which it will
RELEASE the floating block to the reservoir of available blocks. These
stages are shown in Figures 5-9 through 5-11. The RELEASE procedure also
sets all fields to some predetermined value. Corresponding to the excep-
tion for the TCF noted above, procedure CORRELFILE.RELEASE calls procedure
CREC HANDLER.FREE ALL to unchain and release all CORRECs currently at-
tache-d to the TCF-block being RELEASEd.

REMARK - Concerning running out of file space, note from Figure 5-7 that
all handlers base the number of blocks allocated on the same constant,
POOL SIZE, which is defined in and exported to the other handlers from
package THREATFILE. The one-to-one correspondence between the number of
TTF blocks and the number of COR RECs is obvious. The respective numbers
of TCF and PTL blocks are based on worst-case analysis: Since each TCF
block corre-lates two or more TTF blocks, the maximum number of TCF blocks
required would be one-half the number of TTF blocks. On the other hand,
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Figure 5-12 (next) shows that if every TTF agedin without being corre-
lated, then the maximum number of PTL blocks required would be the same as
the number of TTF blocks. The net result of this linkage of pool sizes is
that the only OBTAIN procedure requiring critical attention to running out
of room is THREATFILE.OBTAIN. This event, when it occurs, is detected in
procedure TRACK PACK.TRACK when a call on TRACK AIDS.MATCH determines that
the current sensor input represents a "NEWGUY" Tor which a new TTF entry
must be established. When the subsequent call on THREATFILE.OBTAIN fails
(returns with a null pointer), procedure TRACK AIDS.FIND ROOM is called to
see if it is possible to eliminate a TTF with a smaller estimated lethality
than that of the current input (an over-simplified summary). This quest
may or may not succeed; if it does, then the less threatening TTF is
DELETEd and the current input claims its space, otherwise, the current in-
put is passed over, i.e., denied entry to the TTF.

5.2.1.2. File Super-Structures. In addition to the ring pointers dis-
cussed above, each of the three principal file type blocks contains
pointers to the other two types. These enable TTFs, TCFs, and PTLs to be
joined together into super-structures for various purposes. Each link in
such a super-structure is bidirectional, so for example, if a TTF is part
of a correlated object, then it points to the TCF which represents that
correlated object while the TCF contains as many pointers as necessary to
point to all the TTFs which it correlates together.

A TTF represents the observation of a "something out there" by one par-
ticular sensor, having sensor-measured parameter values sufficiently
separated from those of other observations by the same sensor to warrant
the establishment of a new TTF. When first established, such a TTF is
neither correlated nor aged in. This is manifested by having its correla-
tionpointer (TTCFP) and its agedin pointer (TPTLP) both set to null.

Correlation is the process of discovering that two different sensors have
detected an object that is at the same physical location (within reasonable
error windows related to the accuracy with which the sensors involved
measure the parameters that specify physical location). Once such a posi-
tive finding has been established, the TTFs involved are said to be corre-
lated or members of a correlated object.

Independently of correlation, our TTF might be given a lethality assessment
that is sufficiently high, or be detected sufficiently many times as to merit
being aged_in, i.e., considered worthy of display to the crew or of some
other sort of reaction/countermeasure response. When this happens, a PTL
file block is established for the object represented by the qualifying TTF.

Returning to our newly established TTF, in its subsequent history, one of
five things may happen:

1. It may remain both uncorrelated and not aged_in;

2. It may become correlated, but not agedin;
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3. It may become agedin, but not correlated;

4. It may become aged-in and then correlated;

5. It may become correlated and then agedin.

Situation 1 is trivial and uninteresting. Situation 2, correlated but not
aged in, represents the first of our super-structures and is illustrated in
FigiFe 5-13. (In this figure and the others dealing with related super-
structures, we concentrate on the interconnections between the TTF, TCF and
PTL block types and suppress the details of the individual block types'
internal ring connections). As noted above, each TTF has non-ring pointer
fields TTCFP and TPTLP for pointing to associated TCF and PTL blocks. In
situation 2, pointer TTCFP points to the TCF representing the correlation
object to which the TTF belongs; the TPTLP pointer remains null. On the
TCF side of this super-structure, we represent the TTFs "owned" by the TCF
as a doubly-linked chain of COR RECs as discussed in a previous section.
The chain-starters for this chain are called COR FIRST (forward) and COR
LAST (backward). Each COR REC consists of a forward pointer (NEXT), a
backward pointer (PREV), and a pointer to a TTF (CORITEM).

Situation 3, aged_in but not correlated, is illustrated in Figure 5-12. The
TTF's non-ring pointers are set so that TTCFP is now null while TPTLP
points to the PTL block. On the PTL side of this super-structure, there
are two non-ring pointers, PTTFP which points to the agedin TTF and PTCFP
which is null.

Situations 4 and 5 both end up with the super-structure shown in Figure
5-14. Once correlation occurs, we no longer regard the TTFs as being aged_
in; it is the correlated object which is aged in. Thus, direct connections
between TTFs and PTLs which might have existea previously are severed and
the aged in state of the correlated object is represented by a TCF field,
CPTLP whTch points to the appropriate PTL. On the PTL side of this rela-
tionship, PTL pointer field PTCFP now points to the agedin TCF. In situa-
tion 4, if two aged-in TTFs become correlated, only one PTL block survives.

The net result of the approach outlined in the previous paragraph is that
in an active TTF, the pointers TTCFP and TPTLP cannot be non-null simulta-
neously. On the other hand, exactly one of the pointers PTCFP and PTTFP
must be non-null in an active PTL.

5.2.1.3 File Block Component Fields.

a. TTF File Block Components. A TTF file block is an Ada record of
type TTF REC. Its access type, TTF PTR, is the type of all the ring poin-
ters used, as discussed above, to create the TTF orderings. It is also the
type of the TTF root block pointers, the pointers COR ITEM attached to the
TCF file block via CORFIRST/LAST, and the pointer PTTFP of the PTL file
block. These types as well as the types of almost all of the other com-
ponents of the TTF file block are defined in and exported from package TRM_
TYPES.
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The TTF block is divided into three major sections:

o The pointer section;

o The parameter section;

o The miscellaneous field section.

The pointer section includes the ring pointers and the pointers TTCFP and
TPTLP whose functional significance has been discussed above. The ring
pointers are organized into two arrays, TFRWD and TBKWD for the forward and
backward ring pointers, respectively. Each of these arrays is indexed by a
variable of type TTFRANK which can take one of the two values:

TTF SENSOR AZM for the azimuth within sensor ordering and
TTF-GLOBALPRIORITY for the priority/lethality ordering.

These cumbersome literals are often aliased with more convenient names such
as ANGLE for the first and PRIORITY for the second by use of the Ada "re-
names" declaration. Assuming this aliasing has already been done, the
following condensed example taken from procedure MATCH in package TRACK
AIDS (file name: trak aids.text) shows a typical use of the ring pointers
to inspect all the file blocks on a particular ring.

-- S PTR is set initially to point at the head block of the azimuth-
ordered ring for sensor SENSOR;

-- S LAST is set initially to point at the tail block of the same
ring;

loop
-- Perform match tests on the parameters of the file
-- block pointed to by S PTR;

exit when S PTR = S LAST;
S PTR := S PTR.TFRWD(ANGLE); -- Move to next block

end loop;

Typical uses of the pointers TTCFP and TPTLP involve differentiating an
action depending on whether a TTF is correlated, aged_in or neither:

if TRACK FILE.TTCFP /= null -- Correlated?
then TCFIL := TRACKFILE.TTCFP;

elsif TRACK FILE.TPTLP /= null -- Aged-In?
then PTLFL := TRACKFILE.TPTLP;

else -- Neither?
end if;

The parameter section is a single field named SIPDATA. SIPDATA is a record
of type SIP RECORD defined in and exported from package SIP-PACK. The
fields of SIPDATA are as follows:
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SENSOR ID -- Specifies the sensor: LASER, NIS, etc.
EMITTER -- A sensor-specified subtype
RANGEWORD -- Distance in meters if sensor measures range, other-

wise a dummy
AZIMUTH -- Compass angle in degrees
ELEVATION -- Zero degrees at horizon; 90 degrees at zenith
TIMESENSED -- Provides clock time on input, but is never altered;

intended for throughput time measurements when
realtime clock capability becomes available.

This parameter data can be handled at the gross level of an entire SIP
RECORD or at the finer level of individual parameters. At the gross level,
we find in procedure CREATETTF (package TRACK AIDS, file trak-aids.text)
the following statement:

TRACK FILE.SIPDATA := THIS SIP;

TRACK FILE is a pointer to the TTF being created, THISSIP is a pointer to
the STP RECORD with the data to be used; both are input arguments to the
procedure.

A typical use of individual parameters is seen in procedure UPDATE TTF
(same package as CREATE TTF) in which the TTF block pointed to by input
argument TRACK FILE is Eeing updated by the more current information con-
tained in input argument THISSIP:

-- N is the number of times that the TTF block accessed by TRACKFILE
has previously been seen;

-- NEWAVERAGE (X, N, Y) ==> X := (N*X +Y) / (N+1);

if CAN MEASURE(THIS SIP.SENSOR ID, RAYNJ)
THEN NE-W_AVERAGE(TRA-CKFILE.SIPDATA.RANGE WORD,

N, THISSIP.RANGEKWORD);
end if;

The miscellaneous fields section contains three fields:

TTOA -- Latest time the object represented by this block has been
seen;

TPRIO -- The threat priority/lethality of this object;

AICNT -- AgeIn CouNT: The number of times this object has been
seen; used as N in the preceding example (after conversion
to floating point).

EXAMPLE: N := FLOAT (TRACKFILE.AICNT); -- In UPDATETTF.
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b. TCF File Block Components. A TCF file block is an Ada record of
type TCF REC. Its access type, TCF PTR, is the type of all the ring poin-
ters used, as discussed above, to create the single TCF ordering. It is
also the type of the TCF root block pointer and the pointers TTCFP and
PTCFP of the TTF and PTL file blocks, respectively. These types as well as
the types of almost all of the other components of the TCF file block are
defined in and exported from package TRM_ TYPES.

The TCF block is divided into three major sections:

- The pointer section;

- The history section;

- The miscellaneous fields section.

The pointer section includes the ring pointers, the pointers COR_FIRST,
COR LAST, and PT whose functional significance has been discussed above.
The ring pointers are organized into two arrays, CFRWD and CBKWD for the
forward and backward ring pointers, respectively. Each of these arrays is
indexed by a variable of type TCFRANK which can take the single value

TCFGLOBALPRIORITY for the priority/lethality ordering.

This cumbersome literal is often aliased with the more convenient name
PRIORITY or PRIOR C by use of the Ada "renames" declaration. Assuming this
aliasing has already been done, the following condensed example taken from
procedure FIND ROOM in package TRACK AIDS (file name: trak aids.text) shows
a typical use of the ring pointers to inspect all the file-blocks in the
priority ring.

-- TCFL is set to point to the tail block of the priority ring;
-- LAST TCFL is set to point to the head block, same ring;
-- CPRIO is explained later in this section;
loop

exit when TCFL.CPRIO >= LETHALITY;

if TCFL.CPTLP /= null
then PTLIT := TCFL.CPTLP;

else goto MAKEROOM;
end if;

exit when TCFL = LAST_TCFL;

TCFL := TCFL.CBKWD(PRIORC); -- Move to previous TCF
end loop;

The history section consists of two simple and one complex fields; these
are:
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HISCOUNT -- A count of the number of histories saved thus far; can
range from 0 to NHIST, a constant currently fixed at 5;

YOUNGEST -- The index into the array of histories which locates the
most recent one; can range from 0 to NHIST-1;

SIGHTING -- The array of histories with a maximum number elements
= NHIST.

Each element of SIGHTING is a record of type HISTOREC whose four fields

are:

WHO -- A pointer to a TTF block;

RNGE -- Distance in meters;

AZIM -- Compass angle in degrees;

TYME -- The time of the sighting.

SIGHTING is a circular array in that once its capacity is reached, each new
entry is stored over the currently oldest entry. Not every TTF that corre-
lates into a TCF is entered into the history array; the sensor associated
with the TTF must be able to measure range, i.e.:

CANMEASURE(XXXX.SIPDATA.SENSORID, RAYNJ)

must be true. It is assumed that range sensors measure azimuth, but not
vice-versa.

The following example of the use of the history section is taken from
TRACKAIDS.ANALYZEMOTION:

-- LATEST is of type HISTO REC;
-- TCFIL points to a TCF Plock;
-- THIS SIP is a SIP RECORD input argument to the procedure;
LATEST : TCFIL.SIGHTING(TCFIL.YOUNGEST);
TF RANGE := LATEST.RNGE;
DEL T := THIS SIP.TIME SENSED - LATEST.TYME,
DEL-AZ := THIS-SIP.AZIMUTH - LATEST.AZIM;

History handling procedures/functions are provided by package TRM TYPES;
these are function NEXT HINDEX (moves the history array index circularly
forward), function PREV HINDEX (moves the history array index circularly
backward) and procedure SAVEHISTORY.

The miscellaneous fields of a TCF block are:
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RANGERS -- Integer count of the associated TTFs that measure range;
a positive value answers affirmatively the question: can
this correlated object measure range?

GUIDERS -- Integer count of the associated TTFs that illuminate a
target; used by procedure AGE IN PAK.TEST WARNINGS to
raise an ILLUMINATED warning on a hovering object;

ISPLAT -- A boolean flag that says whether or not this correlated
object is a platform; at present this is equivalent to
asking whether or not there is a NIS sensor among the
TCF's associated TTFs.

CTOA -- This is the latest time seen of any of the associated TTFs
on the doubly-linked chain located via COR FIRST and COR
LAST; this time may differ from the time of the most re-_
cent SIGHTING, because of the range-measurement require-
ment on a sighting.

CPRIO -- This is the maximum TPRIO over the chain of associated

TTFs.

Example: See previous example from TRACKAIDS.FINDROOM.

c. PTL File Block Components. A PTL file block is an Ada record of type
PTL REC. Its access type, PTLPTR, is the type of all the ring pointers
useJ, as discussed above, to create the PTL orderings. It is also the type
of the PTL root block pointers and the pointers TPTLP and CPTLP of the TTF
and TCF file blocks, respectively. These types as well as the types of
almost all of the other components of the PTL file block are defined in and
exported from package TRM_ TYPES.

The PTL block is divided into three major sections:

- The pointer section;

- The flags section;

- The miscellaneous fields section.

The pointer section includes the ring pointers and the pointers PTCFP and
TTTFP whose functional significance has been discussed above. The ring
pointers are organized into two arrays, PFRWD and PBKWD for the forward and
backward ring pointers, respectively. Each of these arrays is indexed by a
variable of type PTLRANK which can take one of the two values:

PTL GLOBAL TOA for the time-of-arrival ordering and
PTLGLOBALPRIORITY for the priority/lethality ordering.
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These cumbersome literals are often aliased with more convenient names such
as T OF ARR for the first and PRIORITY for the second by use of the Ada
"rename" declaration. Assuming this aliasing has already been done, the
following condensed example taken from procedure AGO PACK.AGE OUT shows a
typical use of the ring pointers to inspect all the file blocks on a par-
ticular ring.

-- THIS ITEM is set to point to the oldest PTL block on the
TOFARR ring;

-- LASTITEM is set to point to the youngest such PTL block;

-- PTOA is explained later in this section;

loop

AGE CLOCK TIME - THIS ITEM.PTOA;

exit when AGE < MINAGEOUTTIME;

NEXTITEM := THISITEM.PBKWD(TOFARR);

if THISITEM.PTCFP /= null

then -- Complex logic which may result in the deletion
-- of all the TTFs attched to THIS ITEM.PTCFP,
-- the TCF block pointed to by THIS ITEM.PTCFP,
-- and the PTL block pointed to by THISITEM itself.

else -- Less complex logic which may result in the
-- deletion of the TTF block pointed to by
-- THIS ITEM.PTTFP and the PTL block pointed to
-- by THISITEM itself.

end if;

exit when THIS-ITEM = LAST-ITEM;

THISITEM := NEXTITEM;

end loop;

The flag section contains two flag fields; these are:

STATUS -- An enumeration value taking one of the following values:

NONE -- Not yet seen by REACTIONDECISION
WAITING -- Awaiting reaction
ACTIVE -- Reaction in process
COMPLETED -- Reaction has been completed
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PFLAG -- A warning flag taking on one of the following self-explana-
tory values:

NULL WARNING
ILLUMINATED
HIND CLOSING
SCOUT NEARBY
UNIDENTIFIEDOBJECTCLOSING

The elided logic in the previously given example from TRACK AIDS.FINDROOM

calls a function PTEST:

-- PRIO is explaned later in this section;

function PTEST (PFILE : in TRMTYPES.PTLPTR) return BOOLEAN is
begin
return P FILE.STATUS = COMPLETED or else

(P FILE.STATUS /= ACTIVE and then
P-FILE.PPRIO < LETHALITY);

end P-TEST;

The miscellaneous fields section contains the following:

PTOA -- Let the pointer to the PTL block be denoted by PTLIT. If
PTLIT.PTCFP /= null, then PTOA has the same value as
PTLIT.PTCFP.CTOA, otherwise, PTOA has the same value as
PTLIT.PTTFP.TTOA

PPRIO -- Let the pointer to the PTL block be denoted by PTLIT. If
PTLIT.PTCFP /= null, then PPRIO has the same value as
PTLIT.PTCFP.CPRIO, otherwise PPRIO has the same value as
PTLIT.PTTFP.TPRIO

Examples have been given earlier in this section of both PTOA and PPRIO.

5.2.1.4. File Handler Routines. As noted earlier, each of the three
principal file types, TTF, TCF, and PTL, is manipulated by its own package
of functions and procedures. Most of these functions and procedures are
practically identical from package to package except for the type of file
block handled, and could have been used via Ada generics if they had been
available. In the first part of this section, we will discuss these routi-
nes generically, pointing out the few places where they differ. In the
second part of this section we will discuss the functions and procedures
provided by package CRECHANDLER.

a. The Doubly-Linked Ring Handlers. Each of the packages that provides
facilities for handling doubly-linked rings (THREATFILE, CORREL-FILE,
PRIOTHLIST) provides the following functions and procedures:
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OBTAIN -- A procedure for getting a pointer to a free file block.
This procedure has been discussed and illustrated at some
length in a previous secton. As also noted in this same
section, procedure CORRELFILE.OBTAIN also calls procedures
CREC HANDLER.OBTAIN and INSERT twice each to get and attach
two COR RECs to the CORFIRST/LAST pointers of the TCF file
block just obtained.

RELEASE -- A procedure for putting an unneeded file block back into
the reseervoir of available file blocks, and for clearing
out all its fields to some predetermined set of values.
This procedure was also discussed and illustrated at some
length in a previous section. As also noted in this same
section, procedure CORRELFILE.RELEASE first calls proce-
dure CREC HANDLER.FREE ALL to detach and make available
all COR_ R-ECs attached-to the TCF file block being re-
leased.

DETATCH -- There are two overlayed DETATCH procedures for each file
block type. In the first of these, one supplies a pointer
to the file block to be detatched and another argument of
type TTF_ RANK, TCFRANK, or PTL RANK which specifies which
of the rankings is intended. Thus, for example, when the
priority field of a file block changes, one detatches that
block from its priority ring before RE PRIORITIZING it.
This first form of DETATCH affects the pointers of the
specified ring only, leaving the other rings (if any)
intact. The second form of DETATCH is called with the
second argument literally equal to "ALL LINKS", and it
calls on the first form of DETATCH to sever the block from
all of its ring attachments. This second form of DETATCH
is called by DELETE, as discussed in a previous section.

DELETE -- DELETE combines the actions of the second form of DETATCH
and RELEASE, in that order, to sever all ring attachments
of a block and return it to the reservoir of available file
blocks. This procedure was illustrated and discussed at
some length in a previous section.

INSERT -- INSERT is called with four arguments: (1) The INSERTEE = a
pointer to the block which is being inserted; (2) The RING
= PRIORITY, ANGLE, T OF ARR on which the insertion is to
take place; (3) BEFORorAFT which specifies whether the
insertion shall be BEFORE or AFTER some other block which
is already on the specified RING; (4) PLACE = a pointer to
the block already on the RING. INSERT assumes that INSERTEE
is not currently attached to the RING, and neither makes
assumptions about nor has any effect on any other rings to
which INSERTEE may be attached.
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HEAD, TAIL, EMPTY -- HEAD, TAIL, and EMPTY are all functions and
perform identical roles in all three handler packages, but
have some differences in the way that they are called.
First, as to function, HEAD returns a pointer to the head
block of a ring, TAIL returns a pointer to the tail block of
a ring, and EMPTY returns a Boolean TRUE if a ring is empty/
FALSE if not empty. The problem is how to specify the ring.
In order to create a uniform, minimal calling sequence for
these functions in the TTF version, we concocted a seventh,
pseudo-sensor named NAUGHT (usually renamed GLOBAL), so that
calling these functions with a real sensor causes them to
refer to the sensor-oriented rings, while calling them with
the pseudo-sensor GLOBAL causes them to refer to the global_
priority ring. As originally designed, the TCF blocks also
had a sensor-oriented ranking and so this form of calling se-
quence was used there as well. In the course of development,
this sensor-oriented ranking was abandoned, but the calling
sequence was left unchanged to facilitate a future reintro-
duction of such a ranking if a need for it were perceived.
In the PTL version, both rankings were global from the start,
and so the calling sequence for PRIOTHLIST.HEAD and PRIOTHLIST.
TAIL specified which of the two global rankings was intended.
For function PRIOTHLIST.EMPTY, since both rankings are glo-
bal, if either ring is empty, then they both are. So, for
this last function, nothing is specified in the calling
sequence.

CLEAR -- The CLEAR procedure is intended for use by routines outside
of the TRM proper, such as the TEST BED and various interim,
ad hoc drivers used during TRM debugging. Its intended pur-
pose is to re-initialize the file blocks in preparation for a
warm restart; it does this by DELETEing all file blocks cur-
rently on active duty.

RE-PRIORITIZE -- This procedure INSERTs the file block pointed to by
the input argument in its proper place on the global_priority
ring. Priority ranking is descending in the forward ring
direction.

RE-ARRANGE -- This procedure exists only in package THREATFILE. It
INSERTs the file block pointed by the input argument in its
proper place in its sensor's azimuth-order ring. The sensor
is picked up from the SIPDATA.SENSOR ID field of the block.
Azimuth ordering is ascending in the-forward ring direction.

5.2.1.5. The CREC HANDLER Package. This package contains the pool of
available correlation records (COR RECs) which are attached by the pointers
COR FIRST and COR LAST to individual TCF records (TCF_ RECs) to indicate
which TTF records (TTF RECs) are collocated. The manner in which this
attachment is made is as a doubly-linked chain, as discussed in an earlier
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section. It also contains the following procedures and functions for hand-
ling these records:

OBTAIN -- No difference whatever except for the type of pointer re-
turned between this OBTAIN and procedures THREATFILE.
OBTAIN and PRIOTHLIST.OBTAIN.

RELEASE -- No difference whatever except for the object being RE-
LEASEd between this RELEASE and procedure THREATFILE.
RELEASE and PRIOTHLIST.RELEASE.

FREEONE -- This function is the equivalent of the first form of the
DETATCH procedures discussed above; it severs the chain at-
tachments and reconnects the chain links remaining (if any),
but leaves the block just free floating. As noted in an
earlier section, the nature of the doubly-linked chain
structure forces it to recognize five cases: chain already
empty, chain is a singleton, block is being freed from the
head, from the tail, from the middle of a non-trivial chain.
In the first two of these cases, the function returns a
Boolean FALSE, and in the last three a TRUE.

FREEALL -- This procedure is the functional equivalent of the DELETE
procedures discussed above, except that it performs its
DELETE action on all blocks attached to the chain starters
(COR FIRST and COR LAST) of a given TCF block. FREE ALL
uses FREE ONE and RELEASE in that order inside a loop-until
FREEONE returns a FALSE value.

INSERT -- This procedure exists in two overlayed versions. The first
overlay is the functional equivalent of the INSERT proce-
dures discussed above, i.e., it permits one to INSERT the
INSERTEE BEFORE and AFTER a block (PLACE) already on the
chain. There is no ring to be specified, but a pointer to
the TCF block must be supplied in order to find the COR_
FIRST and COR LAST pointers. The logic must account for
four cases: before an ordinary block, after an ordinary
block, before the head block, and after the tail block. The
second overlay always INSERTs the INSERTEE as the head block
on the chain of a specified TCF block. It handles the case
of an initially empty chain directly and uses the first
overlay of INSERT to insert before the head block of a non-
empty chain.

5.2.1.6. Ada and Dynamic Data Files -- Lessons Learned. The chief lesson
learned in the course of Phase II with respect to the use of Ada for the
design of dynamic data files and their handlers is the value of Ada features
that were not available in the version of the compiler available to us.
Foremost amongst these features was Ada generics, the ability for writing
procedures independent of the types of their input/output arguments and to
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"instantiate" a different version for each such type -- in essence, some-
thing like a high-order-language version of assembly language macros.
Thus, for example, almost all of the handler procedures/functions could
have been written in one generically typed version and instantiated four
times. The lack of generics also encouraged a touch of non-uniform design
that wouldn't have occurred otherwise. Thus, the need for CORRELFILE.
OBTAIN and RELEASE to deal with the embedded COR-RECs would undoubtedly
have been handled in a different manner than it actually was. The availa-
bility of generics and the compulsion toward uniformity that they engender
would also undoubtedly have inspired a more uniform and less confusing
handling of the calling sequences of the HEAD, TAIL and EMPTY functions
across the three principal file types and their varying sensor-oriented and
global ordering requirements.

It would have been possible to devise a Threat Resolution Module based on a
monolithic dynamic data base, i.e., a data base with only one block type,
containing the appropriate fields to represent all the states and rela-
tionships exhibited by the three-part data base described above. One can
imagine using of an ordering ring to represent the aged-in subset of this
monolithic data base. The reason that this was not done (back in Phase I)
was to promote the decoupling of the component processes of the TRM and to
reduce the size of critical regions in the data base with a view toward an
eventual realtime implementation of the TRM, that is, an implementation of
the TRM not as a set of subroutines (the present implementation) but as a
set of loosely coupled concurrent tasks each operating on its own section
of the dynamic data base. Although we have maintained the divided aspect
of a realtime data base design, we cannot be sure that all the features we
have designed into it will be consistent with good realtime design. A
major point of worry is the extensive system of pointers linking the three
sections of the dynamic data base; do these defeat decoupling? The answer
is a guarded "yes," because the net effect of these pointers is to promote
crossover: the ability of TRACK, say, to make inquiries into parts of the
data base outside of the TTF which is its main concern. One can rest
assured that the adaptation of the present data base to a realtime environ-
ment will ococupy a considerable part of our attention in Phase III.

5.2.2. The Static Data Base. The static data base is a respository for
the many static (unchanging) data items and tables required to implement
the Threat Resolution Module (TRM)in that style of software design termed
"table-driven," i.e., able to cover a wide range of logical behavior with
a minimal amount of actual code in which the logical course is determined
by the values of data items stored in tables. These data items/tables
include such things as the values of error windows (tolerances) for doing
matching tests, Boolean flags which specify abilities such as whether or
not a particular sensor is able to measure a parameter such as elevation
and sets whose elements dictate which sensors can be correlated with which.

The static data base is contained in a single package named STATICDATABASE
(file name: st-data.text) which is organized according to the particular
TRM process (or subprocess within a process) which the various data items/
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tables are used in more than one process; such cases will be pointed out in
the sections which follow. This organization reflects the process-oriented
development followed during Phase II and reflects also the fact that Phase
II constituted a learning environment for preparing for Phase III.

Section (1) will discuss the form, content, and purpose of the static data
as currently organized. Section (2) will discuss lessons learned during
Phase II and extrapolate these lessons to some speculations on the organi-
zation of static data in Phase III.

5.2.2.1. Static Data: Form, Content and Purpose. The principal pro-
cesses of the TRM are TRACK, CORRELATE, AGEIN, AGE OUT, and DECIDE RE-
ACTION; the last process listed does not presently contribute to the static
data. Within the TRACK process, the static data is classified in accor-
dance with its use in two of TRACK's principal subprocesses: MATCH and
ASSESS LETHALITY. This organization will be followed in the paragraphs that
follow.

Many of the data tables to be discussed are sensor-indexed, i.e., the set
of index values is the following ordered set of enumeration literals named
SENSOR INDEX which is defined in and exported from package GEN-TYPES (file
name: gentypes.text):

SENSORINDEX: (LASER, NIS, OPTICAL, PMD, MMWAVE, NBC)

With the exception of a special case in package AGE IN PAK, none of these
indices is referred to outside of STATIC DATABASE. The sensors are, in-
stead, referred to generically via a variable usually named SENSOR; this
implies a lack of specialized logic based on characteristics of a sensor
that are not recorded in the static data base tables, and thus provides
some indication that the goal of making the TRM be table-driven has been
achieved.

When the data items/tables contain numeric values, these values are, in
most cases, represented as floating point numbers. This choice of repre-
sentation was governed by two considerations:

(i) The compiler we were using did not support fixedpoint real
types, the probable ultimate design choice, and

(ii) Even if fixed-point real types had been available, the choice
of floating point freed us to concentrate on the design of algo-
rithms without having to worry about numeric accuracy issues.
This convenience has been purchased at the cost of a somewhat
degraded performance in that the floating point arithmetic
operations are carried out by software subroutines and not by
hardware instructions. In view of Phase II's goals, this seemed
a worthwhile tradeoff.
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In the paragraphs which follow, we shall usually avoid giving the specific
numeric values provided in the tables, because in many instances these
values are particularly prone to change as the performance of the TRM is
"tuned-up."

a. Static Data for the TRACK Process. As noted, data provided for the
TRACK process is classified under two of TRACK's principal subprocesses,
MATCH and ASSESSLETHALITY. Data supplied for MATCH are as follows:

CAN-MEASURE - This is a doubly-dimensioned array of Boolean flags
which specify whether (true) or not (false) a parti-
cular sensor from the SENSOR INDEX set can measure
one of the three location parameters, AZIM (azimuth);
ELEV (elevation); and RAYNJ (range -- this particular
spelling chosen because "range" is a reserved word in
the Ada language). Originally designed to serve the
needs of MATCH, CAN MEASURE is now also used in the
following TRACK subprocesses: ANALYZE MOTION and UP-
DATETTF; future plans call for its use in TRACK sub-
process ASSESS LETHALITY. CANMEASURE is also used by
the CORRELATE process to govern the gathering of his-
tory SIGHTINGs.

Example: if CANMEASURE (SENSOR, RAYNJ) then ....

AZIMUTHTOLERANCE, ELEVATION TOLERANCE, RANGETOLERANCE - Each of
these is a sensor-indexed vector of floating point
values used to determine whether a particular location
parameter which is measurable by a particular sensor
(see CAN MEASURE above) in the input data matches
similar data already recorded in a threat-tracking_
file (TTF).

AZIMUTHWEIGHT; ELEVATION WEIGHT; RANGE WEIGHT - Each of these is a
sensor-indexed vector of floating point values used to
compute a match score according to the formula: Match_
score: = Sigma over themeasurable_parameters of
parameter weight times parameter deviation squared;
where parameter deviation is 0 if the absolute dif-
ference of the fwo parameter values is within the
parameter tolerance and equal to the absolute dif-
ference if this is within twice the parameter tolerance;
any difference exceeding twice the tolerance Triggers a
mismatch; all measurable parameters within tolerance
yields a 0 score which triggers an immediate match
(MATCHWITHOUTCHANGE).

ACCEPTABLESCORE - Assuming no immediate match has occurred, a match
score may or may not have been accumulated by the time
all candidates have been examined. If no score has been

52



accumulated, then the input is said to represent a
GENUINE NEWGUY. If a score has been accumulated, then
it is the minimum of the scores generated. If this
minimum score is less than or equal to ACCEPTABLE SCORE
for the sensor in question, then the match is said to
represent a MATCH WITH CHANGE, otherwise it is a POS-
SIBLE NEWGUY which has-to be subjected to motion analy-
sis before its status can be finally declared.

This entire match algorithm is an experimental, heur-
istic projection toward what such an algorithm must
eventually be. The interaction of the tolerances,
weights and acceptable scores is a subject for a future
operational analysis sfudy beyond the scope of the
present effort.

Static data which support the ASSESSLETHALITY subprocess of the TRACK
process are as follows:

BASELETHALITY - This table is the only table in the static data base
that is indexed by EMITTER INDEX. This index is based
on a presumed subtype of a-sensor suppled by the sensor
in its input to the TRM. The base-lethality is a float-
ing point value which represents the intrinsic lethality
of the sensor/emitter combination without respect to
other important lethality-determining factors such as
range, azimuth, and elevation.

AZIMUTH LIMITS, AZIMUTH MODIFIER; ELEVATION LIMITS, ELEVATION
MODIFIER; RANGELIMITS,7RANGE MODIFIER - These three pairs of tables

are used to bring the location of a detected object to
bear on the estimation of its lethality. Given a value
for one of the three parameters, this value is matched
against the PARAMETER LIMITS TABLE by subroutine INDEX
LOOKUP (package ELEM FUNC) to determine an index L such
that limit (L) < value < = limit (L + 1). This index
is then used to look up a value from the PARAMETER
MODIFIER table (which has one fewer elements than fhe
PARAMETER LIMITS table). Once this has been done for
all parameters, the assessed lethality is computed as
the product of the base lethality and the three looked-
up modifiers. As presently designed, this modification
is done irrespective of whether or not the sensor of the
object whose lethality is being assessed CAN MEASURE
all three parameters. This is a candidate for redesign
early in Phase III. Each of these tables is indexed by
a positive integer in the range 1..Locally-declared
constant (a different constant for each table pair).
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b. Static Data for the CORRELATE Process. Static data for the COR-
RELATE process consists of a single array indexed by SENSOR INDEX; the
elements of this array are somewhat complex records of type ABLE SET. The
name of the array is CAN BECORRELATED; it was named for the intended func-
tional purpose of the first two fields in the record. As development of
the CORRELATE process unfolded, it was found convenient to insert newly
perceived correlationsupport data items into the record as additional
fields. The constituent fields of the ABLESET record are as follows:

SENSET - This is a set as defined in package sets SETS PACK.
SENSOR SETS (a package within a package), i.e., a
vector of Boolean flags in one-to-one correspondence
with the indices SENSOR INDEX that indicate whether
(true) or not (false) tie sensor named by the index
is a member of the set. The set SENSET belongs to
a record corresponding to a particular (the "present")
sensor, and is used to declare which other sensors
can be correlated with the present sensor.

EMISET - This is a set as defined in package SETS PACK.EMITTER
SETS (a package within a package), i.e., a vector

of Boolean flags in one-to-one correspondence with
the indices EMITTER INDEX that indicate whether
(true) or not (false) the emitter named by the index
is a member of the set. The set EMISET belongs to a
record corresponding to a particular sensor, and is
used to declare which of the emitter subtypes of that
sensor are correlatable.

ISPLATFORM - This is a Boolean flag used to indicate whether (true)
or not (false) detection by the sensor whose index
locates this record implies a platform, i.e., a
mobile system emitting one or more sensor-detectable
forms of energy. At present,the only record for
which ISPLATFORM is true is that corresponding to
NIS.

PLATSPEED - This is a don't-care field if ISPLATFORM is false,
otherwise it represents the maximum speed of the
platform in meters per second. This is used by
TRACK AIDS.ANALYZE MOTION to determine whether the
apparent separatioln of two objects could be due to
the motion of either one of them. While not pre-
sently accomplished, future enhancements of the cor-
relation algorithm include the integration of such
motion analysis.

ISILLUMTOR - This is a Boolean flag used to indicate whether (true)
or not (false) the sensor whose index locates this
record is receiving energy originating from the
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object. This is used by the TEST WARNINGS subprocess
of AGE IN to post an ILLUMINATED warning for a hover-
ing object.

AZTOL, RGTOL - These are floating point values that specify azimuth
and range tolerances, respectively, for correlated
objects. AZTOL is used by the CORRELATE processes to
set up an azimuth search window in the azimuth
ordered ring corresponding to a sensor which can be
correlated with the sensor of the input data. It is
also used by the MOTION HISTORY subprocess of the
AGE IN process to discrTminate between real motion
and the random jitter of multiple observations.
RGTOL is presently used only in this latter context.
It will have a role in future enhancements of the
correlation algorithm. Both AZTOL and RGTOL are set
during the elaboration of package STATIC DATABASE
by internally defined functions named INTTIALIZE
MAX AZIMUTH_ TOLERANCE and INITIALIZE MAX RANGE
TOLERANCE. Each of these selects the-maximum of its
respective parameter over the sensor and its SENSET
correlation mates of the AZIMUTH_/RANGETOLERANCE
factors used in MATCH.

MAX SCORE - This is a floating point value whose intended purpose
is to provide a maximum correlation score for com-
paring rival correlation candidates. MAX SCORE's
role would be analogous to that of ACCEPTABLE SCORE
in the MATCH subprocess of TRACK (see above). This
has not been fully deveoped.

5.2.2.2. Static Data for the AGE IN Process. Several categories of data
used by AGE IN but classified under CORRELATE were described above. The
data categories which follow are used exclusively by AGEIN; these include:

AGEINCOUNT - This is a sensor-indexed vector of integers each of
which gives the number of times a particular object
detected by that sensor must be seen before that
object will be permitted to Age_In.

AGEIN LETHALITY - This is a sensor-indexed vector of floating point
values each of which gives the minimum lethality
estimate which will enable Age In. The Age inCount
and the AgeIn Lethality are used together in a
whichever-occurs-first manner.

SCOUTHELlWARNING RANGE, ATTACK HELl_ WARNINGRANGE - These two
floating point values give the minimum distance in
meters that can be exhibited by a closing helicopter
before the TESTWARNINGS subprocess of AGEIN will
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post a SCOUT NEARBY or HIND_ CLOSING warning. The
posting of such a warning overrides any consideration
of Age In Count or lethality. The distinction between
a scout and an attack helicopter is made on the
basis of the emitter field of the input from the NIS
sensor.

5.2.2.3. Static Data for the AGE OUT Module. The AGE_ OUT Module (AOM) is
not a process of the TRM; it is an independent software module called from
the same external software level that invokes the TRM itself. The TRM and
the AOM share the data structures and the handlers of the dynamic data base
which are described in another section of this document. The function of
the AOM is to remove old or spent files from the dynamic data base. To do
this, it inspects the time-ofarrival ordering of the prioritized threat
list (PTL) in oldest to youngest order looking for PTL records whose age
(time elapsed since the object described was last seen) is beyond a certain
limit (see below). In a future extension, the AOM will also look for PTL
records that have been marked by the Reaction Management Module as having
had the prescribed reaction completed. The sTatic data that supports these
actions are as follows:

AGEOUTTIME - This is a sensor-indexed vector of times (a separate
Ada type in this implementation) each element of which
gives the maximum age that an object should attain be-
fore being eliminated.

MIN AGE OUT TIME - This is a single time item representing the mini-
mum value in the AGE OUT TIME vector. It is set up
during elaboration o7f pac-kage STATIC DATABASE by an
internally defined procedure, INITIALIZE MIN AGE OUT
TIME. It is used to trigger an early exit from the
time-oriented search loop: since the loop runs from
oldest to youngest, once a PTL record is reached whose
age is less than MINetc. no other PTL records are
going to Age_Out.

5.2.2.4. Lessons Learned - Ada and Static Data Base Design. As indicated
earlier, the design of the static data base was proccess-oriented: as each
process was designed, the data items/tables required to support that pro-
cess were designed and inserted into a catchall package for such data. We
had largely achieved a table-driven design for the TRM. What we did not
achieve in the way of design goals was a design that enables rapid recon-
figuration of the software in terms of being able to eliminate and/or add
sensors and/or reaction devices. There are three factors that account for
this:
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i. The process oriented approach described above:

ii. The assumption that this goal was not appropriate to Phase II;

iii. Allowing ourselves to be tempted into using attractive, but
dangerous Ada features;

We shall concentrate on this latter point. The Ada feature in mind here
is the ability to declare enumeration types and objects. These types/
objects are quite useful in software like the TRM for such purposes as
giving readable names to status indicators: Example:

type MOTIONSTATUS is (INDETERMINATE, AWAY, CLOSING, HOVERING, NIL);

But when it came to naming the sensors, we allowed ourselves to fall into
the same temptation; we defined an enumeration type called SENSOR TYPES
and its subtype SENSOR INDEX, and therein lies the inability of tTe present
data base design to achieve the design goal of rapid reconfigurability: it
fixes the number and names of the sensors in the code itself instead of
externalizing these matters in the data.

An approach to the design of the static data base aimed at achieving rapid
reconfigurability, both for sensor/reactors and for tactical/error-recovery
reasons, should be based on the following measures:

i. The design must be sensor-oriented not processoriented, i.e.,
instead of having a large number of function-oriented, sensor-
indexed vectors as we presently have, we need to have a number
of sensor-indexed super-records whose fields encompass the
sorts of functions delineated in Section (1):

type SENSORRECORD is
record

SENSOR NAME - string, maximum length TBD
MEASURESPARAMETER - parameter-indexed array

of Boolean flags
PARAMETERTOL - parameter-indexed array of

numeric tolerances
PARAMETERWEIGHT - parameter-indexed array of

numeric weights
etc.

end record;

ii. The sensors may still be specified in an enumeration type, but
now they will be anonymous, i.e., SENSOR 1, SENSOR 2,... with
the text that identifies the actual sensor embedded as data in
the SENSOR RECORD, as shown above. Some maximum number of sen-
sors will be provided for, with the actual number presently in
the system being recorded as a global variable < = this maxi-
mum.
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Under these design measures, reconfiguration, whether at a dynamic level or
at the level of recompilation of the code, would replace whole SENSOR
RECORDs and adjust the variable that specifies how many are present.

5.2.3. The Threat Resolution Module.

5.2.3.1. Introduction and Overview. The Phase II version of the Threat
Resolution Module (TRM) is structured as a procedure named THREAT RESOLU-
TION (package TRM PACK, file name: trm pack.text) which is largely a logi-
cal skeleton for Tnvoking the principaT processes TRACK, CORRELATE, AGEIN,
and DECIDE REACTION. These processes are themselves, in turn, also
structured-as procedures which may invoke lower level procedures (subpro-
cesses). Associated with the TRM is the AGE OUT Module (AOM) which is not
a process of the TRM but an independent software module called from the
same external software level that invokes the TRM itself. The overall
block diagram of the TRM is shown in Figure 5-15.

The TRM and the AOM are file-oriented modules. The major function of the
TRM is to create, update, and maintain a set of dynamic data files which
collectively represent a perception of the external battlefield situation.
(The term "file", as used here, means a structured collection of data
records stored in the memory of the DMS computer, i.e., an internal file).
The three principal types of dynamic data files are the Threat Track Files
(TTFs) created and maintained by the TRACK Process, the Threat-Correlation
Files (TCFs) created and maintained by the CORRELATE Process, and the
Prioritized Threat List (PTL) created and maintained by the AGE IN Process.
The function of the AOM is to remove old or spent files from the dynamic
data base. Thus, the relationship between the TRM and the AOM is that they
share the data structures and the procedures/functions which handle the
various data file types listed. The internal details of the dynamic data
base and its handlers are provided in Paragraph a. of this Section 5.2.
(Page 22).

The actual functional behavior of the TRM and the AOM is in large measure
determined by-the settings of various flags, numeric values, and other
types of data stored as the tables/items of the static data base (package
STATIC DATABASE, file name: st data.text). This design approach results
in whaE is termed "table-drivenl software. The internal details of the
static data base are provided in Section 5.2.2. (Page 50).

The overall logic of the TRM presented in the skeletal framework of TRM
PACK will be discussed in Paragraph 2. Paragraphs 3 through 7 will provide
discussions of the principal processes and their subprocesses (for the pur-
poses of this document, AGE OUT will be classified as a TRM process):

PARA NO. PROCESS NAME PACKAGE NAME FILE NAME

3 TRACK TRACK PACK trak_pack.text
4 CORRELATE CORR PACK corr pack.text
5 AGE IN AGE IN PAK ageinpack.text
6 DECIDE-REACTION REAC PACK reacpack.text
7 AGEOUT AGO_PACK ago_pack.text
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5.2.3.2. TRM Overall Logic. Procedure THREAT RESOLUTION constitutes the
executable code of the TRM; it is the sole export of package TRMPACK, and
it accepts as arguments two pointers and the current time:

Input Arguments: INPUT PTR
OUTPUT PTR
CLOCK TIME

The INPUT PTR points to the first of a chain of one or more INPUTDATA_
BLOCKS (IDBs):

INPUT PTR--> I D B -- > I D B . . . I D B

#1 #2 . . . LAST

Each IDB consists of a pointer and a SENSOR INPUT PACKET (SIP); both the
IDB and the SIP are defined in and exported-from SIP - PACK. The pointer is
used to point to the next IDB if the IDB in which it-appears is not the
last in the chain or, contrariwise, to mark the end of the chain (with
value = null). The SIP portion of the IDB contains information received
from a sensor; all IDBs on a given input chain pertain to the same sensor.
This input design was adopted in the expectation that some sensors could
hand off multiple observations. The information contained in a SIP is as
follows:

SIPRECORD: SENSOR ID - Name/index of sensor
EMITTER - Platform/threat subclass
RANGE WORD - Distance in meters
AZIMUTH - In degrees
ELEVATION - In degrees
TIMESENSED - See note below

Each of these fields is present for every sensor without regard for whether
or not a given sensor can measure a particular parameter. At the level of
Phase II, we have made the convenient assumption that the units in which a
particular parameter is expressed are the same for all sensors; the three
location parameters are all represented as floating point numbers. See
further remarks on this subject in Paragraph b (Page 54).

The OUTPUT PTR points to a list of pointers to Prioritized Threat List
entries which have become newly aged_in as a result of this call on the
TRM.

The CLOCK TIME is the time at which the TRM is being called. Each of the
principal-dynamic data base file types has a field for recording the latest
time seen; any of these file entries which is created or updated as a re-
sult of this call on the TRM will have this time inserted into said field.
The TIME SENSED field of the input SIPs measure the time at which the BUS_
INPUT PROCESS (outside the TRM) received the SIP and is provided for pur-
poses of throughput-time measurements in a future version providing access
to a realtime clock.
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THREATRESOLUTION serves only as a skeleton of the required processing
logic, invoking processes (procedures) in other packages in pursuit of its
ends. The packages containing these subsidiary procedures are provided in
square brackets in the structured-English description of the logic of
THREATRESOLUTION which follows:

THREATRESOLUTION

STRUCTUREDENGLISH DESCRIPTION

Set the CURRENT INPUT PTR equal to the INPUT PTR argument

Repeat the following loop until the last IDB has been processed,
i.e., until CURRENT INPUT PTR = End of Chain marker (null)

Set THIS SIP equal to the SIP portion of the IDB pointed to
by the CURRENTINPUTPTR

Invoke the TRACK process [TRACK PACK] providing it with the
following inputs: THIS SIP and-CLOCK TIME, getting back the
following outputs: TRACKFILE and TRACKINGFLAG

-- REMARK: If TRACK successfully matches THIS SIP to the
SIPDATA field of an existing Threat Track File
(TTF), then TRACK FILE will point to same and
TRACKINGFLAG wilT have the value UPDATED;

OR: if TRACK has established a new TTF, then TRACK
FILE will point to same and TRACKINGFLAG will
have the value CREATED;

OR: if THIS SIP described a low priority threat and
there was no room left to establish a new TTF,
then TRACK FILE will have no meaning (will be null)
and TRACKINGFLAG will have the value DISCARDED.

If the TRACKING FLAG has the value DISCARDED, then skip to
the paragraph just before the end of the loop ("Replace...").

If the TRACK FILE was not previously correlated, then
invoke the CORRELATE process [CORR PACK] providing the

following inputs: TRACK FILE, getting back the
following outputs: CORR -FILE

else set CORRL FILE to null so that the subsequent logic
will behave as though correlation did not occur.
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If correlation occurred:
then invoke the AGEIN process [AGE IN PAK] providing the

following inputs: CORRLFILE, getting back the
following outputs: AGED IN FILE

else invoke the AGE IN process [AGE IN PAK] providing the
following inpufs: TRACKFILE, getting back the
following outputs: AGED-INFILE.

-- REMARK: There are two different versions (Ada
overlays) of the procedure AGE IN; they are
distinguished by their input arguments

In either case, if agein does not occur, the
output AGEDINFILE is a null pointer.

If Age In occurred:
then invoke the DECIDEREACTION process [REACPACK]

providing the
following inputs: AGED IN FILE, getting back the
following outputs: - TBD -

(This point marks the end of the if TRACKINGFLAG statement)

(Replace CURRENT INPUT PTR with the IBD pointer pointed to
by CURRENT INPUTPTR, Tf this is the End ofChain marker,
this will be discovered at top of loop.

End of the loop and of the THREATRESOLUTION procedure.

Note the non-realtime nature of this design; there is no notion of con-
currency of processes. Each SIP is pushed through all the stages which its
parameter values and the current state of the dynamic data base will allow,
before the next SIP can be considered. This means that a current SIP of
low priority can keep a SIP of immense importance waiting.

5.2.3.3. The Track Process. This package defines and exports the proce-
dure named TRACK and the enumeration type, TRACK RESULT whose three values,
DISCARDED, UPDATED and CREATED where shown being-used in Paragraph b.
TRACK is also somewhat skeletal, accomplishing its major actions through
procedures contained in package TRACK AIDS (file name trak-aids.text).
Both TRACK and its auxiliaries will be detailed in this paragraph, starting
with TRACK itself to illustrate the functions of the auxiliaries in an
operational context.

As noted in Paragraph b, THREAT RESOLUTION sends TRACK a SIP RECORD re-
ceived as input and the CLOCK TTME at the time of call, and receives in
return a pointer to a Threat Track File (TTF) entry and a TRACKING FLAG
taking one of the three TRACT RESULT values listed above. If TRACKINGFLAG
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has the value DISCARDED, then TRACK FILE will be a null (meaningless) poin-
ter; if the value is UPDATED, then TRACK FILE will point to a matching TTF
which has just been updated with the information contained in the input
SIP RECORD (name: THIS SIP); if the value is CREATED, then TRACK FILE will
point to a TTF entry which has just been created with the input data of
THIS SIP. Achieving an understanding of the logic that connects the in-
puts-to these possible outcomes is our next task. To that end, we present
a structured English description of the TRACK process with interspersed
remarks. AIT procedures invoked in this description are found in package
TRACK AIDS unless otherwise noted in square brackets.

TRACKPROCESS

STRUCTUREDENGLISH DESCRIPTION

Invoke the MATCH procedure providing it with
the following inputs: THIS SIP, getting back
the following outputs: TRACKFILE and MATCHFLAG

-- REMARKS: This is essentially where all of TRACK's work is
done; everything that follows is in reaction to
the combinations of values that the output values
take.

Output MATCH FLAG is of type MATCH RESULT which is
defined in and exported from TRACK AIDS. The
values it can take will become apparent in the
logic which follows.

The first value of MATCH FLAG tested for is DISCARD. The
reponse to this outcome is to set TRACKINGFLAG to DISCARDED
and return.

-- REMARKS: There is presently no logic in MATCH which
causes MATCH FLAG: = DISCARD, but this value was
introduced against a future situation in which
MATCH would also perform various validity checks
on the input and use this outcome to flag
unacceptable input.

At this point, some sort of a match has been achieved, so the
next thing done is to invoke procedure ASSESS LETHALITY which
accepts THIS SIP as input and provides a floating point value,
LETHALITY, as output.
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-- REMARK: The logic which follows has been simplified in the
interest of enhanced understanding by introducing
a quantity of fictitious "goto" statements. The flow
of control is actually handled by putting a case
statement inside an infinite loop and getting out of
this loop in three different ways: (a) exit state-
ments, (b) return statements, and (c) changing the
value of the case expression, so that the next time
around the loop, the case encountered ends in a re-
turn. The head of the loop is visited a maximum of
two times.

The other outcomes for MATCHFLAG and the responses to them
are given in the following numbered clauses. The reasons for
MATCH FLAG taking any particular value will be given when we
discuss the MATCH procedure.

o MATCHFLAG = GENUINENEWGUY

Goto section below labelled NEWGUYLOGIC

o MATCHFLAG = POSSIBLENEWGUY

Invoke the ANALYZE MOTION procedure, providing it
the following inputs: THIS SIP, TRACK FILE, getting back
the following outputs: MOrTION FLAG (type MOTION_ RESULT
defined in/exported from TRACK-AIDS).

a. MOTIONFLAG = NEWGUY

(Match discrepancy can't be explained by motion).

Goto section below labelled NEWGUYLOGIC

b. MOTIONFLAG = OLDGUY

(Match discrepancy is explained by motion).

Goto Case 3, immediately following.

0 MATCHFLAG = MATCHWITHCHANGE

Invoke the UPDATE TTF procedure, providing it with
the following inputs: THIS SIP, LETHALITY,

CLOCK TIME, TRACK FILE, and
Update-degree = FULL,

getting back

the following outputs: TRACKFILE

Set the TRACKINGFLAG to UPDATED and return.
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o MATCHFLAG - MATCHWITHOUTCHANGE

Invoke the UPDATE TTF procedure, providing it with
the following inputs: THIS SIP, LETHALITY,

CLOCK TIME, TRACK FILE, and
update__degree = PARTIAL,

getting back

the following inputs: TRACKFILE

Set the TRACKINGFLAG TO UPDATED and return.

-- REMARK: The update degree parameter is of type UP
DEGREE defTned in and exported from TRACKAIDS
taking the two values FULL and PARTIAL.

NEWGUYLOGIC

Invoke procedures OBTAIN [THREATFILE] which has no input
arguments but returns the pointer TRACKFILE.

If there is no room for a new TTF (TRACK FILE = null)
then invoke procedure FINDROOM, providing it with

the following inputs: LETHALITY, getting back
the following outputs: TRACKFILE

If TRACK FILE still = null,
then no room can be found, therefore,

set the TRACKING FLAG to DISCARDED and return
else Clear out the contents of the room which has been

found at TRACKFILE

-- REMARK: For further insight into the matter of
running out of file space see the discussion
in Section a,(Page 26) and the documentation of
procedure FINDROOM, below.

Arriving at this point, we have a pointer to an empty TTF
entry, either from OBTAIN or from FINDROOM:

Invoke procedure CREATE TTF, providing it with
the following inputs: THIS SIP, LETHALITY, CLOCK TIME and

TRACKFILE, getting back
the following outputs: none

Set the TRACKINGFLAG to CREATED and return

End of TRACK process.
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a. The MATCH Subprocess. The MATCH subprocess (procedure) accepts as
input a SIP RECORD named THIS SIP and attempts to match the data in the SIP
(sensor input packet) to the same data items in the SIPDATA field of all
TTF entries pertaining to the same sensor, i.e., the search is conducted
over a same sensor subset of the TTF, and that sensor is the one given in
the SENSOR TD field of the SIP RECORD and in the SIPDATA of the TTF en-
tries. MATCH returns a MATCH FLAG and in the SIPDATA of the TTF entries.
MATCH returns a MATCH FLAG to TRACK. This takes one of the values DISCARD,
GENUINE NEWGUY, POSSIBLE NEWGUY, MATCH WITH CHANGE and MATCHWITHOUT_
CHANGE. Except for the Tirst two of these values, MATCH also returns a
valid (non-null) pointer (TRACK FILE) to the best match available, where
the meaning of "best" will be explained in the next paragraph.

MATCH FLAG = DISCARD is intended (in a future version) to denote rejection
of invalid input data. A value of GENUINE NEWGUY indicates no match
found. The other values indicate the degree of match attained. At the
high end, MATCH WITHOUT CHANGE indicates that all parameters matched within
the permitted wTndows (tolerances), and is used by TRACK to trigger a
PARTIAL update of TRACK FILE. Next comes MATCH WITH CHANGE which indicates
that the former degree o-f match could not be atrained, but what was pos-
sible was a match in which no parameter discrepancy exceeded twice the
prescribed tolerance AND of all such matches TRACK FILE had the smallest
discrepancy-based score AND this score did not exceed a prescribed ACCEPT-
ABLE SCORE. MATCH WITH CHANGE is used by TRACK to trigger a FULL update of
TRACT FILE. FinaTly, a rating of POSSIBLE NEWGUY indicates that all of
the conditions for MATCH WITH CHANGE were met except the last one. Here
the possibility exists that the apparent discrepancy between the parameters
of THIS SIP and those of TRACK FILE.SIPDATA are due to the motion of one,
the other or both of the objects between observations. Thus, TRACK uses
such an indication to call on ANALYZEMOTION to rule on the acceptability
of this motion hypothesis.

The simplified summary of the preceeding two paragraphs is made more pre-
cise in the structuredEnglish description which follows:

MATCHSUBPROCESS

STRUCTURED ENGLISH DESCRIPTION

PRELIMINARIES: Set TRACK FILE to null so that if a MOTION FLAG =
DISCARD oF GENUINE NEWGUY exit is taken, no TTF

will be indicated. Set SENSOR to The SENSORID field of THISSIP.

Test whether the azimuth ordered ring pertaining to SENSOR is
empty, i.e., test the Boolean value returned by function
THREATFILE.EMPTY -- if this is true, then set MATCHFLAG =
GENUINENEWGUY and return.
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LOOP SETUP: Set ponters S PTR and S LAST to the head and tail
entries, respectively, o-f the azimuth-ordered ring

pertaining to SENSOR. Set the MATCHPTR to null and the
MATCHSCORE to +Infinity.

Repeat the following loop until one of its exit conditions is met.

Set the SCORE TO 0

If SENSOR cannot measure azimuth, proceed to the ELEVATION
MATCHTEST

Compute DELTA 1 as the absolute difference between THISSIP.
AZIMUTH and S PTR.SIPDATA.AZIMUTH.

If DELTA 1 falls within the AZIMUTH TOLERANCE for this SENSOR,
then proceed to ELEVATIONMATCHTEST (nothing added to score)

orif DELTA 1 is within twice said tolerance
then augment SCORE by the AZIMUTH WEIGHT for this SENSOR times

the square of DELTA_1; proceea to ELEVATIONMATCHTEST.

else: The failure to match could be due to azimuth wraparound
from 360 degrees to zero, compute DELTA_2 as the absolute
difference between DELTA_1 and 360.

Repeat the previous two tests with DELTA 2 replacing
DELTA 1, if both of these tests fail, proceed to
NEXT FILE.

ELEVATION MATCH TEST: If SENSOR cannot measure elevation,
proceed to RANGEMATCHTEST.

Compute DELTA 1 as the absolute difference between THISSIP.
ELEVATION and SPTR.SIPDATA.ELEVATION.

If DELTA 1 falls within the ELEVATION TOLERANCE for this
SENSOR, t-hen proceed to RANGEMATCHTEST (nothing added to
SCORE).

orif DELTA 1 is within twice said tolerance,
then augment SCORE by the ELEVATION WEIGHT for this SENSOR

times the square of DELTA_1; proceed to RANGEMATCHTEST.

else Proceed to the NEXTFILE.

RANGEMATCH TEST: If sensor cannot measure range,
proceed to EMITTERMATCHTEST.
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Compute DELTA 1 as the absolute difference between THIS SIP.
RANGEWORD ana SPTR.SIPDATA.RANGEWORD.

If DELTA 1 falls within the RANGE TOLERANCE for this SENSOR,
then proceed to EMITTERMATCHTEST (nothing added to SCORE).

orif DELTA 1 is within twice said tolerance,
then augment SCORE by the RANGE WEIGHT for this SENSOR times

the square of DELTA_1; proceed to EMITTERMATCHTEST.

else proceed to the NEXTFILE.

EMITTERMATCHTEST: We will tolerate a mismatch of the
emitter type if and only if the score

attained so far is within reasonable limits:

If SCORE does not exceed the ACCEPTABLESCORE for this SENSOR
then proceed to INSPECT SCORE,
else proceed to NEXTFIFE

INSPECTSCORE:

If SCORE is still equal 0,
then All parameters matched within tolerance; so

Set MATCH FLAG to MATCH WITHOUTCHANGE,
Set TRACKFILE to S_PTR, and
Return. -------------------------- Loop Exit 1--->

Otherwise, if SCORE is less than MATCHSCORE

then Replace MATCH SCORE by SCORE and
Set MATCHPTR to S PTR.

NEXT FILE:

If S PTR is equal to S LAST,
then-Exit from the loo ------------------ Loop Exit 2--->
else make S PTR point to the next TTF in the azimuth-ordered

ring for this SENSOR.

End of the Loop.

POSTLOOPLOGIC:

If the MATCH__PTR is still null,
then all excursions of the loop abort at "proceed to NEXT FILE"

without a SCORE being obtained; so Set
MATCH FLAG to GENUINENEWGUY and
Return.
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orif MATCH SCORE does not exceed the ACCEPTABLE SCORE for this
SENSOR,

then Set MATCH FLAG to MATCH WITH CHANGE,
Set TRACKFILE to MATCHPTR, and
Return.

else, Set MATCH FLAG to POSSIBLE NEWGUY,
Set TRACKFILE to MATCH_PTR, and
Return.

End of the MATCH Subprocess.

The MATCH subprocess was designed before it was decided to create an azi-
muth within sensor ordering on the TTFs. A redesign of MATCH to take ad-
vantage of this ordering is not a trivial task, and so is left in the
category of desirable, future enhancements. An example of a file search
that does take advantage of this ordering may be found in the CORRELATE
process.

b. The ASSESS LETHALITY Subprocess. ASSESS LETHALITY is called with
THIS SIP (the input Sensor Input Packet) as its argument and it returns as
its output argument LETHALITY, a floating point value which measures the
estimated lethality of the threat object represented by THIS SIP. ASSESS_
LETHALITY is called from TRACK when it is clear that some soFt of a match
has been declared by MATCH (MATCH FLAG not equal DISCARD). The estimated
lethality generated here follows The input SIP through the course of its
further processing by the TRM. A brief list of the functions in which
LETHALITY is an active participant is as follows:

- It is stored in the TRPIO field of a TTF when CREATE TTF is
called by TRACK to create a new TTF entry and updated when
TRACK calls UPDATETTF;

- It is stored in the CPRIO field of a Threat Correlation File (TCF)
entry and represents the maximum over all the TRPIO fields of the
TTFs associated with the TCF;

- It is stored in the PPRIO field of a Prioritized Threat List (PTL)
entry and represents the maximum TPRIO over all the TTFs consti-
tuting an aged_in object:

- It is used to keep all three of the above file types on priority_
ordered rings;

- It is used in the FIND ROOM Subprocess (below) to determine if
there are files with le'sser priority which can be released to make
room to create a new TTF.
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Estimated lethality is based on four factors: (a) The emitter type of the
object, (b) its range, (c) its azimuth, and (d) its elevation. Factor
(a) (THIS SIP.EMITTER) is used to index the STATIC DATABASE array, BASE
LETHALITY. The other factors are used in a search function, ELEM FUNC.
INDEX LOOKUP, to find an index for obtaining the three parameter MODIFIERs
(parameter = RANGE, AZIMUTH, ELEVATION). The final estimate is the product
of the base lethality and the three modifiers.

Each location parameter is represented by two tables, a parameter LIMITS
table and a parameter MODIFIER table. The lookup process is the same for
all three parameters and will be illustrated for AZIMUTH only. The
AZIMUTHLIMITS and MODIFIER tables are as follows:

INDEX LIMITS ENTRY INDEX MODIFIER ENTRY

1 -1.00 1 64.00
2 45.00 2 16.00
3 135.00 3 4.00
4 225.00 4 4.00
5 315.00 4 16.00
6 361.00 5 64.00

The INDEX-LOOKUP function searches for the position i of value = THIS_

SIP.AZIMUTH in the Limits table such that

Limit (i) < Value < = Limit (i + 1)

Thus, an object at 90 degrees azimuth would yield an index of 2, and this
index into the MODIFIER table would fetch a modifier of 16.00.

As presently constituted, ASSESS LETHALITY does not take cognizance of
whether or not sensor THIS SIP.SENSOR ID measure all of the parameters con-
sidered above. This, too, is a planned future enhancement.

c. The ANALYZE MOTION Subprocess. ANALYZE MOTION is called by TRACK
when MATCH returns with MATCH FLAG set to POSSIBLE NEWGUY. ANALYZE
MOTION rules or whether the parameter discrepancy represented by the-
POSSIBLE NEWGUY status is due to motion by one, the other, or both of the
objects represented by THIS SIP and TRACK FILE (the two input arguments to
ANALYZE MOTION). If the ruTing is in favo-r of motion, the MOTION FLAG out-
put takes the value OLDGUY, otherwise it takes the value NEWGUY.

This analysis of motion is based on the assumption that the VIDS vehicle is
stationary, and it ignores the truly significant effect of the speed of
sound, the form of energy detected by one of the most important range_
measuring sensors. It also ignores elevation as a factor and pays no at-
tention to any time elapsed or motion occurring since the most recent of
the two observations.
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Given those assumptions, the algorithm consists of computing the input-
ted travel of the object using the law of cosines, then computing the
apparent speed of the object by dividing this inputed travel by the time
elapsed between the two observations and finally deciding whether this is a
reasonable speed for the type of object in question. If the speed is
reasonable, then we infer that the apparent discrepancy in location repre-
sents motion of the object. If the speed is not reasonable (i.e., is too
large), the second observation is taken to be a NEWGUY.

In order to do this limited analysis, the two candidate objects, THIS SIP
and TRACK FILE, must both be detected by sensors that can measure range.
At least one of them must be detected by a sensor which implies a platform
(i.e., something possessing a maximum speed). It is assumed that a plat-
form is a range measurer, but not the reverse. If the TRACK FILE does not
produce the sought-for property directly, it may do so indirectly by being
correlated to a platform or a rangemeasurer.

ANALYZEMOTION is designed to handle two major cases:

1. THIS SIP and TRACK FILE were detected by the same sensor. This
case arises when A-M is called from TRACK, and reduces the quali-
fication tests of fhe previous paragraph to: the common sensor
must imply a platform.

2. THISSIP and TRACK FILE were detected by different sensors. This
case is intended to serve the needs of the CORRELATE process, but
this integration has not yet taken place. This is also an area
for future enhancement.

We shall simplify the discussion which follows by confining ourselves to
the logic which handles the first of these cases (much of which is shared
with the second case). This logic is found in the structuredEnglish
description which follows:

ANALYZE MOTION SUBPROCESS

STRUCTUREDENGLISH DESCRIPTION

Assuming the qualifications for the called-from TRACK case have
been met:

Take the SPEED factor from the platform corresponding to the
common sensor. Set up the primary computational factors re-
quired as follows:
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TFRANGE from TRACKFILE.SIPDATA.RANGEWORD

SIPRANGE from THISSIP.RANGEWORD

DELT from THISSIP.TIMESENSED - TRACKFILE.TTOA

DELAZ from THISSIP.AZIMUTN - TRACKFILE.SIPDATA.AZIMUTH

Then use the Law of Cosines to compute the imputed travel:

TRAVEL is SQRT (SIP RANGE**2 + TF RANGE**2
-2.0O* SIPRANGE * TFRANGE * COS (DEL AZ))

Finally, compare the imputed speed to the maximum platform speed:

If TRAVEL / DEL T does not exceed SPEED,
then set MOTION FLAG to OLDGUY,
else set MOTION-FLAG to NEWGUY

Return

End of ANALYZEMOTION Subprocess.

*******•* * * ** * ************************ ***

d. The CREATE TTF Subprocess. CREATE TTF is called by TRACK when MATCH
has declared a GENUINENEWGUY or ANALYZE-MOTION has ruled out motion with a
MOTION FLAG = NEWGUY. All arguments to CREATE TTF are input arguments;
these are: THISSIP, TRACKFILE, LETHALITY, and CLOCKTIME.

The logic of CREATE TTF is arrestingly simple and has insufficient struc-
ture to merit an ext-ended structuredEnglish description. The logic of
CREATETTF is as follows:

Set TRACKFILE.SIPDATA from THIS SIP
Set TRACK FILE.TTOA from CLOCK TIME
Set TRACKFILE.TPRIO from LETHALITY
Set TRACKFILE.AICNT to 1 (Age_In count)

Invoke procedure THREATFILE.REPRIORITIZE to insert TRACKFILE
on the priority (lethality) ordered ring.

Invoke procedure THREATFILE.REARR ANGLE to insert TRACKFILE
on the azimuth within-sensor ordeFed ring.

e. The UPDATE TTF Subprocess. UPDATE TTF is called by TRACK to perform
two degrees of update on TTF entries. A-FULL update is requested when
MATCH returns with MATCH FLAG set to MATCH WITH CHANGE and a PARTIAL update
is requested when MATCH FLAG is set to MATCH WITHOUT CHANGE or when MATCH
FLAG is set to POSSIBLE-NEWGUY and the subsequent caTl on ANALYZEMOTION
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produces an OLDGUY result. The chief differences between the two degrees
of update is that a FULL update updates the position parameters in the
TTF's SIPDATA field and makes adjustments in the file ordering rings for
changes in azimuth and priority (lethality).

The arguments presented to UPDATETTF are:

THIS SIP - SIP record from input
LETHALITY - Computed by ASSESSLETHALITY
CLOCK TIME - From input
TRACK FILE - The TTF being updated
UPOPTION - FULL or PARTIAL

The following structured English description provides a more detailed look
at the update logic:

UPDATETTF SUBPROCESS

STRUCTUREDENGLISH DESCRIPTION

If UPOPTION is PARTIAL then goto PARTIALUPDATE.

Set N to the floating point representation of TRACKFILE's
agein count field (AICNT).

-- REMARK: The following logic uses a procedure named
NEW AVERAGE (package ELEMFUNC) which updates an
average as follows:

NEW AVERAGE( Avg, N, Val)

==> Avg: = (N*Avg + Val) / (N + 1)

If the sensor THIS SIP.SENSOR ID can measure range,
then NEWAVERAGE (-Avg, N, Val ) where:

Avg is TRACK FILE.SIPDATA.RANGE WORDK
Val is THIS _SIP.RANGE WORD

If the sensor can measure elevation,
then NEWAVERAGE( Avg, N, Val ) where

Avg is TRACK FILE.SIPDATA.ELEVATION
Val is THIS SIP.ELEVATION

If the sensor can measure azimuth
then Set Avg from TRACK FILE.SIPDATA.AZIMUTH,

Set Val from THISSIP.AZIMUTH.
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Update azimuth recognizing possibility of wraparound:

If Val > = 315 degrees and Avg < = 45 degrees,
then NEW AVERAGE( Avg, N, Val-36 0 °)

if Avg is now negative, add 360° to it.

orif Val < = 45 degrees and Avg > = 315 degrees,
then NEW AVERAGE( Avg, N, Val+360),

if Avg is now > 360, reduce it by 360*.

else NEWAVERAGE( Avg, N, Val )

Set TRACK FILE.SIPDATA.AZIMUTH from Avg,
DETATCH TRACK FILE from its azimuth ring,
Reattach TRACK_FILE in azimuth order (REARRANGLE)

If the current TRACK FILE priority (TRACKFILE.TPRIO) is less
than THIS SIP's LETHALITY

then Reset TRACK FILE.TPRIO from LETHALITY
Reset TRACK FILE.SIPDATA.EMITTER from THIS SIP.EMITTER
DETATCH TRACK FILE from its priority ring
Reattach TRACK_FILE in priority order (REPRIORITIZE)

PARTIALUPDATE:

-- REMARK: The following logic uses an internally defined
procedure UPDATE PTL(PTL) which does the
following things:

- Sets PTL's latest time seen field PTL.PTOA from
TRACK FILE.TTOA

- DETATCHes PTL from its time of arrival ring
- INSERTs PTL at the head of said ring

- If the PTL's priority field (PTL.PPRIO) is less
than TRACK FILE.TPRIO
then Reset PTL.PPRIO from TRACK FILE.TPRIO

DETATCH PTL from its priority ring
Reattach PTL in priority order (REPRIORITIZE).

Increment TRACK FILE's agejin count field (AICNT),
Set TRACKFILE's latest time seen field from CLOCKTIME

If TRACK FILE is already correlated (TRACKFILE.TTCFP not null),
then Set CORFIL from TRACKFILE.TTCFP.

If TRACK FILE.TPRIO > COR FIL.CPRIO,
then Reset COR FIL.CPRIO from TRACK FILE.TPRIO

DETATCH COR FIL from its priorTty ring
Reattach COR FIL in priority order (REPRIORITIZE)
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Set COR FIL's latest time seen field from TRACK FILE.TTOA

If CORFIL is aged in (CORFIL.CPTLP not null),
then UPDATE_ PTL (CORFIL.CPTLP) -- see remark above.

If the sensor THIS SIP.SENSOR ID can measure range
then Invoke TRM TYPES. SAVEHISTORY to record a new SIGHTING

in COR_ FIL

orif TRACK FILE is aged in (TRACK FILE.TPTLP not null),
then UPDATE PTL (TRACK FILE.TPTLPT.

End of UPDATETTF Subprocess.

f. The FIND ROOM Subprocess. FIND ROOM is called by TRACK when a call
on THREATFILE.OBTAIN yields a null TTF PTR indicating that there is no room
left to establish a new TTF. The basic thrust of FIND ROOM is to search
for an existing TTF that has a priority lower than input argument LETHAL-
ITY. If such a file is found, it is DETATCHED or DELETEd so that its room
can be claimed by TRACK for the new higher priority TTF. The file space
thus freed is pointed at by output argument TRACK FILE. If the quest is
unsuccessful, FINDROOM returns with TRACKFILE se-t to null.

The logic of FIND ROOM is made more precise by the following structured_
English description:

FINDROOM SUBPROCESS

STRUCTUREDENGLISH DESCRIPTION

-- REMARK: The search for a disposable file is carried out in two
passes, with the second pass not used if the first
succeeds. In the first pass, we search for an
uncorrelated TTF whose priority (FYLE.TPRIO) is less
than LETHALITY. If the TTF is also aged in, then FYLE
must also pass the P TEST. If P FILE is set from
FYLE.TPTLP, then P TEST (P FILE) is true if:

a. PFILE.STATUS is COMPLETED, or

b. P FILE.STATUS is not ACTIVE and
PFILE.PPRIO is less than LETHALITY.
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FIRSTPASS -- TTFSEARCH:

Set TRACKFILE to null in anticipation of a vain search

Set up pointers for a low-to-high scan of the TTF priority ring

Set FYLE to point at the priority ring tail block
Set LASTFILE to point at the priority ring head block

While FYLE.TPRIO > = LETHALITY, repeat this loop

If FYLE is not correlated (FYLE.TTCFP is null),
then If FYLE is not agedin (FYLE.TPTLP is null),

then DETATCH FYLE from all of its ring attachments
Set TRACK FILE from FYLE
Return

orif: P TEST (FYLE.TPTLP) is true,
then DELETE ( FYLE.TPTLP )

DETATCH FYLE from all its ring attachments
Set TRACK FILE from FYLE
Return

exit from this loop if FYLE = LAST FYLE
otherwise, set FYLE to point to the TTF with the next

highest priority

End of TTFSEARCH loop

-- REMARK: Having arrived at this point, the TTF SEARCH has
failed; therefore, we undertake the second pass in
which we first test to see if there are any Threat
Correlation Files (TCFs), and if so we do a TCF
SEARCH which differs from the previous one only-in
the complexity of getting rid of the files found to
be disposable.

SECONDPASS -- TCFSEARCH:

If there are no TCFs present, simply return

Set up pointers for a low to high scan of the TCF priority ring:

Set TCFL to point at the priority ring tail block
Set LASTTCFL to point at the priority ring head block

While TCFL.TPRIO > = LETHALITY, repeat this loop

If TCFL is agedin (TCFL.CPTLP not null)
then Set PTLIT from TCFL.CPTLP

If P TEST ( PTLIT ) is true
then DELETE (PTLIT)

Goto MAKE ROOM
else goto MAKEROOM
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exit from this loop if TCFL = LAST TCFL
otherwise, set TCFL to point to the TCF with the next

highest priority

End of TCFSEARCH loop

-- REMARK: If we arrive at this point, both passes have failed

Return

MAKEROOM: First we must DELETE all the TTFs that are correlated
with the TCF (TCFL) we have just found. Then we can
DELETE TCFL itself. Finally, we can again call
THREATFILE.OBTAIN which will not fail this time.

Set CITEM from TCFL.COR FIRST; it now points to the first

correlated item record

Repeat the following loop until the exit condition is met

DELETE the TTF pointed to by the CORITEM field of the record
(CITEM.CORITEM)

exit if this is the last correlated item record
(CITEM.NEXT is null)

otherwise, reset CITEM from CITEM.NEXT

End of correlated item loop

DELETE the TCFL

OBTAIN a TTF and return it as TRACKFILE

Return

End of FINDROOM Subprocess

5.2.3.4. The CORRELATE Process. Correlation is the process of discovering
that two different sensors have detected an object that is at the same phy-
sical location (within reasonable error windows related to the accuracy
with which the sensors involved measure the parameters that specify physi-
cal location). Once such a positive finding has been established, the TTFs
involved are said to be correlated or members of a correlated object.
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The CORRELATE process is defined in and is the sole export from package
CORR PACK. All of its auxiliary subprocesses are defined in the body of
CORR PACK. CORRELATE is called with input argument TRACK FILE (pointer to
the TTF we are seeking to correlate), and it returns with-output argument
CORR FILE (pointer to the TCF with which TRACKFILE correlates or null to
indicate no correlation).

CORRELATE is called by THREAT RESOLUTION after TRACK has been called and
has returned with a TRACKING FLAG which is not set to DISCARDED. One fur-
ther condition must be set be-fore CORRELATE may be called: the TTF,
TRACK FILE, must not be already correlated, i.e., the pointer TRACK FILE.
TTCFP must be null. This will, of course, be true if TRACKFILE has just
been created, but there may be cases when an OLDGUY is not correlated.
These conditions may be regarded as dynamic conditions; other conditions of
a more static nature are imposed on correlatability in the course of the
CORRELATE process itself. These conditions as well as other factors af-
fecting the course of the CORRELATE process are contained in a STATIC_
DATABASE array named CAN BE CORRELATED which is SENSOR INDEXed. Specific
descriptions of this static data are given in Section 81(b) above.

We will begin our description of the CORRELATE process with a structured
English amplification of the process's logic, giving operational definition
to the static data items and the subprocesses. After that we will provide
descriptions of these subprocesses: COMPUTECORRSCORE, CREATETCF, ADD_
ANITEM, and COUNTUP.

CORRELATION

STRUCTUREDENGLISH DESCRIPTION

PRELIMINARY DEFINITIONS:

THIS : The SIP RECORD, TRACK FILE.SIPDATA
AZTH : THIS.AZIMUTH
SENSOR : THIS.SENSOR ID
MITTER : THIS.EMITTER

PERMISSIONS : CANBECORRELATED (SENSOR)

IFISPLAT : PERMISSIONS.ISPLATFORM

WRAPAROUND : A Boolean flag initialized to False to indicate
that the aximuth search zone does not straddle the
0 to 360 degrees wrap-point; may be changed
later.
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CORRELATE LOGIC:

We start by setting CORRLFILE to null in anticipation of a
failure to correlate.

Then we extract a set (in the full sense of set theory) named S
MATES from the PERMISSIONS record (field SENSET). S MATES names
the other sensor types which can correlate with SENSOR, and we
simply abort (return from) the process at this point if S MATES is
empty. See SETSPACK discussion in Paragraph 8 below.

Only some of SENSOR's emitter types may be correlatable.
Therefore, we obtain set PERMISSIONS.EMISET, and return from the
process at this point if MITTER is not a member of this set.

Next, we define the lower and upper limits of the azimuth search
zone as LIM INF: = AZTH - WINDOW while LIM SUP: = AZTH + WINDOW,
where WINDOW is the AZTOL field of PERMISSIONS.

Then, we determine if WRAP AROUND obtains: WRAPAROUND is True if
either LIM INF < 0 degrees-or LIM SUP > 360 degrees. In the first
case, we augment LIM INF by 360 degrees and in the second case, we
decrease LIM_SUP by 360 degrees.

As the last preliminary before entering the MAIN LOOP, we set
CORRELATIONSCORE to +Infinity and WINNER to nulT.

-- REMARKS: CORRELATION SCORE is intended to be the analog of
MATCH SCORE and WINNER the analog of MATCH PTR in the
MATCH subprocess of TRACK. The analogous Togic is not
fully developed in the current version of CORRELATE.

The logic of the MAIN LOOP as currently coded involves
six levels of if statements and inner loops. In order
to simplify and clarify the description of this logic,
we shall: a) introduce some fictitious Goto's and

labels, and
b) describe the action of certain inner

loops without structuring them formally
as loops.

MAINLOOP: For S in SENSORINDEX loop:

Let S IS PLAT be a Boolean flag which indicates whether or
not sensor S implies a platform. This is taken from the IS_
PLATFORM field of CANBECORRELATED(S).

We now have to impose some constraints on the eligibility of
Sensor S to correlate with SENSOR:
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FIRST : S must be a member of SMATES (see above)

SECOND : The azimuth ordered ring pertaining to sensor S
must not be empty: not THREATFILE.EMPTY(S)

THIRD SENSOR and S cannot both imply a platform:
not ( TFISPLAT and SISPLAT )

If any of these strictures is violated
then Goto NEXTSENSOR (at end of MAINLOOP)

-- REMARK: The search for WINNER takes place in two parts.
The forward search does the entire search if
WRAP AROUND-is False, otherwise it accomplishes
the search from 0 degrees up to LIM SUP. The
backward search takes place only if-WRAP AROUND is
True; here the search retrogresses from 360 degrees
down to LIMINF.

The complexity introduced into the logic by the need
to allow for azimuth wraparound could possibly be re-
duced by introducing two azimuth orderings, one the
same as the present to be used when no wrap around
has occurred, and the second running from -T80 degrees
up to +180 degrees to be used when wraparound has
occurred. This is an item for future consideration.

FORWARD SEARCH: -- Fictitious label:

Set T FILE to point at the head block of the azimuth-ordered
ring for sensor S (block with smallest azimuth).

It is possible that the forward search is not necessary. This
could arise if the smallest azimuth is already larger than
LIM SUP; if this is so, goto BACKWARD SEARCH.

Otherwise, set T LAST to point at the tail block of the azimuth
ordered ring for-sensor S (block with largest azimuth).

If WRAP AROUND is False, enter a small loop whose purpose is to
move the pointer T FILE forward in the ring until T FILE points
to the first block-whose azimuth is > = LIM INF. It is possible
to run out of blocks (T FILE = T LAST and azimuth of TLAST block
is < LIMINF). If this occurs, goto NEXTSENSOR.

We are now ready to inspect the forward part or the entirety of the
azimuth search zone:
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While TIFILE.SIPDATA.AZIMUTH < = LIM-SUP loop

Inside this inner loop we call the subprocess COMPUTE CORR
SCORE if a final iet of qualification tests can be passed.-
The first of these tests rules out T FILE if its emitter type
is not correlatable. The second test eliminates T FILE if
T FILE is correlated to a platform, even though T FILE's own
sensor does not imply a platform.

Exit the MAINLOOP if CORRELATIONSCORE is now = 0.

Exit this loop if TFILE = TLAST

Move TFILE forward to the next lowest azimuth block in the
ring.

End of loop.

BACKWARDSEARCH: -- Fictitious label

If WRAPAROUND is false goto NEXTSENSOR

Otherwise, set T FILE to point at the tail block of the azimuth
ordered ring for sensor S (block with largest azimuth).

It is possible that the backward search is not necessary. This
could arise if the largest azimuth is already less than
LIMINF; if this is so, goto NEXTSENSOR.

Otherwise, set T LAST to point at the head block of the azimuth
ordered ring for sensor S (block with smallest azimuth).

We are now ready to inspect the backward part of the azimuth
search zone:

While TFILE.SIPDATA.AZIMUTH > = LIM INF loop

Inside this inner loop we call the subprocess COMPUTE CORR
SCORE if a final s-et of qualification tests can be passed.-
The first of these tests rules out T FILE if its emitter type
is not correlatable. The second test eliminates T FILE if
T FILE is correlated to a platform, even though T FILE's own
sensor does not imply a platform.

Exit the MAINLOOP if CORRELATION SCORE is now = 0

Exit this loop if TFILE = TLAST.
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Moving T FILE backward to the next highest azimuth block in

the ring.

End of loop.

NEXT SENSOR: a null statement to allow real goto's to reach
the end of the loop

End of MAINLOOP.

At this point, there exist two possibilities for failure to cor-
relate. The first is that WINNER was never reset by COMPUTE CORR
SCORE from its initial null value. The second is that there is
a finite CORRELATION SCORE, but it is greater than the accept-
able score in PERMISSIONS.MAXSCORE. If either condition obtains,
return from this point.

Next, we set up LETHALITY as the

Maximum of WINNER.TPRIO and TRACK FILE.TPRIO
if WINNER is not CORRELATED

Maximum of WINNER.TTCFP.CPRIO and TRACKFILE.TPRIO
if WINNER is correlated

LETHALITY will be passed as a global variable to CREATE TTF and
ADD AN ITEM since these subprocesses are defined within the scope
of CORRELATE.

Finally,

If WINNER is not correlated (WINNER.TTCFP is null)
then Invoke CREATE TTF
else Invoke ADDANITEM

CORRELATES's output argument, CORRL FILE, will be returned directly
from one or the other of these internally defined subprocesses.

End of CORRELATE Process

a. The COMPUTE CORR SCORE Subprocess. The COMPUTE CORR SCORE subprocess
is called from those iffner loops of the MAIN LOOP that pertain to examining
the TTF blocks in the azimuth search zone. D-efined within the scope of
CORRELATE, it receives only the input argument CANDIDATE which is actual-
ized as the current value of the pointer T FILE. It updates the non-
argument variables CORRELATIONSCORE and WTNNER.
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In a fully matured design of a correlation process, this subprocess would
contain the logic that does the actual matching within windows of the other
(non-azimuth) location parameters, making allowance for whether or not both
sensors (S and SENSOR) can measure a given parameter. The net result of
these comparisons would be a penalty score (larger is worse) which would
be compared to CORRELATION SCORE and would replace CORRELATION SCORE if it
were less than the latter. At the same time, WINNER would be set from T
FILE. Thus, at the end of the MAIN LOOP, WINNER would either be null or
point to the TTF meeting all correlation conditions and having the best
match to TRACK FILE. The logic of CORRELATE proper has been designed to
integrate properly with such a subprocess design. The TRACK subprocess,
ANALYZE MOTION, has been designed to serve CORRELATE in the same functional
role that it plays with respect to TRACK/MATCH, requiring only a small
amount of additional logic in CORRELATE.

The present design of COMPUTE CORR SCORE is a simplified stand-in for the
design sketched above; it merely se-ts the CORRELATIONSCORE to 0 and sets
WINNER from CANDIDATE. The net result of these actions is: If correlation
is possible, it will occur with WINNER equal to the first T FILE that falls
inside the azimuth search zone. Another consequence is to render meaning-
less the post-MAIN LOOP test of CORRELATION SCORE versus PERMISSIONS.MAX_
SCORE; it will never fail. This algorithm, despite its crudity, has been
of value in debugging CORRELATE and its interface to the entire dynamic
data base.

b. The CREATE TCF Subprocess. CREATE TCF is called at the end of COR-
RELATE when WINNER is a confirmed correlate of TRACK FILE and WINNER is
not already correlated (WINNER.TTCFP is null). It obtains space for a new
TCF block and initializes all fields therein. It also revises pointers in
WINNER and TRACK FILE. CREATE TCF is defined within the scope of CORRELATE
and receives and returns all if requires without a calling sequence. In
particular, unless CORRELATE ends by calling ADD AN ITEM (see below),
CREATE TCF is responsible for returning a non-null CORRLFILE pointer to
THREATRESOLUTION via CORRELATE's calling sequence.

The logic of CREATETCF is explained in the following structuredEnglish
description:

CREATETCF

STRUCTUREDENGLISH DESCRIPTION

Invoke CORRELFILE.OBTAIN to get a pointer CORRLFILE to an unused
TCF block. Section A explains why there is no danger of running
out of TCF blocks. Section A also indicates that obtaining a TCF
also causes two COR RECs to be obtained via CREC HANDLER.OBTAIN and
attached to the chaTn starters COR_ FIRST and COR LAST which are
fields of the TCF block.
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Record the pointers TRACKFILE and WINNER on the chain just
mentioned:

CORRL FILE.COR FIRST.COR ITEM: = TRACK FILE
CORRL-FILE.COR-LAST.COR TTEM: = WINNER

Call subprocess COUNT UP to set the RANGER, GUIDERS, and history
fields of the TCF. This requires two calls: first for WINNER
because it is the older and then for TRACKFILE because it is the
younger of the two TTFs.

Set up the IS PLAT field of CORRL FILE as the logical (inclusive)
or of the two Booleans CAN BE CORRELATED (X).ISPLATFORM where X is
a sensor index taking successively the values: the sensor per-
taining to TRACKFILE and the sensor pertaining to WINNER.

Set up the CPRIO field of CORRL FILE from the value of LETHALITY
computed in the post-MAIN LOOP logic of CORRELATE. Then call
CORRELFILE.RE PRIORITIZE To install CORRL FILE on the TCF priority
ring. No prior DETATCH is required, as i-n ADD_ AN ITEM, because
CORRLFILE having just been obtained, has no ring attachments.

Set CORREL FILE's latest time seen field, CTOA, from the TTOA
field of TRACK FILE. This latter time was set from CLOCK_ TIME
in CREATETTF or in UPDATETTF.

This section of logic which we are now entering has as its object,
creation/revision of the dynamic data base superstructures
discussed in Section A.

First, we make both TRACKFILE and WINNER point at CORRLFILE.

TRACK FILE.TTCFP: = CORRL FILE
WINNER.TTCFP: = CORRL-FILE

Then, we handle the possibility that age in may be present in
one, the other, both or neither of TRACK FILE and WINNER. If
neither is aged in, there is nothing leff to do. Otherwise, the
other three cases are handled using an internal to CREATE TCF
procedure named RECONNECT. The logic of RECONNECT-will be given
after its use is demonstrated.

If TRACK FILE is agedin (TRACKFILE.TPTLP not null), but
WINNER isn't,

then RECONNECT( TRACKFILE )

orif WINNER is aged in, but TRACK FILE isn't,
then RECONNECT( WINNER )
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orif both WINNER and TRACK FILE are aged-in,
then PRIOTHLIST.DELETE (the younger)
RECONNECT (the older of the two).

-- REMARK: This criterion for deciding which PTL block to delete
and which to reconnect is an area for early redesign
effort. For one thing, it takes no cognizance of the
status and warning fields they contain.

Formal end of CREATETCF logic.

RECONNECT:

Let the formal argument be PTR, and let PFILE be set from
PTR.TPTLP.

Make CORRL FILE point at P FILE: CORRL FILE.CPTLP: = P FILE.

Sever PFILE's connection to PTR: PFILE.PTTFP: = null.

Make PFILE point at CORRLFILE: PFILE.PTCFP: = CORRLFILE

Set up P FILE's time and priority fields:

Set P FILE.PTOA from TRACK FILE.TTOA
Set PFILE.PPRIO from LETHALITY (as above)

Finally, DETATCH P FILE from its time of arrival ring connections,
reINSERT P FILE as the head block on fhis same ring

DETATCH P FILE from its priority ring connections, call RE
PRIORITIZE to insert it in priority order thereon

End CREATETCF Subprocess

c. The ADD AN ITEM Subprocess. ADD AN ITEM is called at the end of
CORRELATE when WINNER is a confirmed correTate of TRACK FILE, but is al-
ready correlated (WINNER.TTCFP non-null). It obtains space for a new COR
REC in which to record TRACK FILE as a new member of the correlated object,
and attaches this record to the existing chain in the TCF (WINNER.TTCFP).
It also revises various superstructure pointers in TRACKFILE, and updates
various TCF fields. ADD AN ITEM is defined within the scope of CORRELATE
and receives and returns-alT it requires without a calling sequence. In
particular, unless CORRELATE ends by calling CREATE TCF (see above), ADD
AN ITEM is responsible for returning a non-null CORRL FILE pointer to
THREATRESOLUTION via CORRELATE's calling sequence.
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The logic of ADDAN ITEM is explained in the following structuredEnglish
description:

ADDANITEM

STRUCTUREDENGLISH DESCRIPTION

Set CORRLFILE from WINNER.TTCFP

Call CRECHANDLER.OBTAIN to get a pointer, CREC, to an unused COR_
REC.
Call CRECHANDLER.INSERT to attach CREC to CORRLFILE.

Record TRACK FILE as a new member of this correlated object:
CREC.CORITEM: = TRACKFILE

Make TRACKFILE point at CORRLFILE: TRACKFILE.TTCFP: = CORRL_
FILE.

At this point, ADD AN ITEM requires, but currently does not have
logic similar to that done in CREATE TCF to handle agein:
TRACK FILE and CORRL FILE -- one, the other, both, or neither
aged Tn. This may involve making RECONNECT external to CREATETCF
so that it is accessible to ADDANITEM.

Call subprocess COUNT UP to set the RANGER, GUIDERS, and history
fields of the TCF. T~is requires only one call: for TRACKFILE.

Set up the IS PLAT field of CORRL FILE as the logical (inclusive)
or of its curient value and CANBFCORRELATED (sensor of TRACK
FILE). ISPLATFORM.

Set up the CPRIO field of CORRL FILE from the value of LETHALITY
computed in the post-MAIN LOOP logic of CORRELATE. Next, call
CORRELFILE.DETATCH to sever CORRL FILE's priority ring connections,
after which call CORRELFILE.REPRTORITIZE to install CORRLFILE on
this same ring.

Set CORRL FILE's latest time seen field, CTOA, from the TTOA field
of TRACK FILE. This latter Time was set from CLOCKTIME in
CREATETTF or in UPDATETTF.

End of ADDANITEM Subprocess
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d. The COUNTUP Subprocess. COUNT UP is a small piece of logic called
from both CREATE TCF and ADD AN ITEM. Its function is to update the
RANGERS, GUIDERS, and history-fields of CORRL FILE with the information
borne by the TTF of the input argument TTFIL. The RANGERS field is an
integer which tells how many of the TTFs correlated into this TCF can
measure range. The GUIDERS field is an integer which tells how many of
these TTFs illuminate a target. The history is a group of fields which
registers: (a) HISCOUNT = how many SIGHTINGs have been recorded, (b)
YOUNGEST = index of most recent SIGHTING, and (c) SIGHTING = an array of
HISTO RECs containing fields: WHO = pointer to the TTF sighted, RNGE =
range, AZIM = aximuth, and TYME = time. SIGHTING is a circular array in
that once HISCOUNT reaches its maximum value (5), each new sighting
overwrites the currently oldest sighting. The task of saving the history
is done by procedure SAVEHISTORY in package TRMTYPES.

The logic of COUNTUP is explained in the following structuredEnglish
description:

COUNTUP

STRUCTUREDENGLISH DESCRIPTION

Set SENSOR from TTFIL.SIPDATA.SENSORID -- TTFIL's sensor.

If SENSOR can measure range (CAN MEASURE (SENSOR, RAYNJ) is true),
then Increment CORRL FILE.RANGERS,

Call SAVEHISTORY (TTFIL, CORRLFILE)

If SENSOR implies illuminator (IS ILLUMTOR field of
CAN_ BE CORRELATED (SENSOR) is true)

then increment CORRLFILE.GUIDERS

End of COUNTUP subprocess.

5.2.3.5. The AGE IN Process. The AGE IN process is actually a pair of
processes, one for aging in uncorrelated TTFs and another for agingin
correlated objects (TCFsT. Both processes have the name AGE IN; the Ada
language is able to distinguish between these two "overlays" by analyzing
the declared types of the calling sequence arguments. The first of these
processes is invoked by THREAT RESOLUTION after the CORRELATE process has
been called to consider an uncorrelated TRACK FILE and the TRACK FILE re-
Omains uncorrelated; here, the input argument-is TRACK FILE. The second of
these processes is invoked by THREATRESOLUTION if the TRACK FILE was al-
ready or has just become correlated; here, the input argumen- is CORRL
FILE, the TCF to which TRACK FILE is correlated. Both processes return the
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same output argument, AGED INFILE, which is a pointer to the PTL repre-
senting the establishment of the input file's aged_in status or null if
agein did not occur. For the sake of clarity and brevity, we shall refer
to the two processes as AGEIN(TTF) and AGEIN(TCF).

The two processes, AGE IN(TTF) and AGE IN(TCF), are not independent, since
the former calls the litter. The two processes rely on a number of subpro-
cesses: two overlayed versions of CREATE PTL (CREATE PTL(TTF) and CREATE
PTL(TCF)), function TEST WARNINGS and function AGE IN-TEST. The text whic-h
follows will present the logic of the two processes in the order AGE
IN(TTF) followed by AGEIN(TCF); the logic of the subprocesses will follow
these.

AGEIN (TTF)

STRUCTUREDENGLISH DESCRIPTION

SUMMARY: If the input TRACK FILE is already correlated, then we
attempt to agein the correlated object to which it
belongs. Otherwise, we call AGE IN TEST to determine
if TRACK FILE can be aged_in, and Tf so, we call
CREATE PTL(TTF) to create a new AGED IN FILE (result
pointer). If age_in is not possible, the result pointer
is set null.

If TRACK FILE already correlated (TRACK FILE.TTCFP not null)
then Invoke AGEIN(TCF), providing

the following inputs: TRACK FILE.TTCFP, getting back
the following outputs: AGED TIN_ FILE.

orif AGE IN TEST (TRACK FILE) is true
then CalT PRIOIHLIST.OBTAIN to get AGEDINFILE as a pointer to

an unused PTL block
Call CREATE PTL(TTF) with inputs TRACK FILE, AGED IN FILE to

set up-its fields and establish its ring connections

else Set AGEDINFILE to null
Return

End AGE IN (TTF) Process
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AGEIN (TCF)

STRUCTUREDENGLISH DESCRIPTION

Set AGEDINFILE to null in anticipation of a failure to age_in.

If the correlated object is already agedin (CORRLFILE.CPTLP not
null)

then Return (nothing left to do)

First, see if a special warning can be posted:

WARNING: = TESTWARNINGS (CORRLFILE) -- function invocation

If the value returned is not the NULL WARNING
then Goto AGEITIN

Otherwise, we allow the whole correlated object to age in if any of
its component TTFs is able to age in. To do this, we must make an
excursion of the chain of CORRECs which point to CORRL FILE's
associated TTFs.

Let CITEM be the COR PTR to the first link on the chain:

CITEM: = CORRLFILE.CORFIRST

Repeat the following loop until its exit condition is met

If AGE IN TEST (CITEM.CORITEM) is true,
then Goto AGEITIN

Exit when the pointer to the next link (CITEM.NEXT) is null

Otherwise, set CITEM to CITEM.NEXT

End loop.

Arriving at this point implies that no agein occurred, therefore

Return
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AGEITIN:

Call PRIOTHLIST.OBTAIN to get AGEDINFILE as a pointer to an
unused PTL block

Call CREATE PTL (TCF) with inputs CORRL FILE, AGEDINFILE to
set up its fields and establish its ring connections

Put the WARNING previously obtained into the PFLAG (warning flags)
field of AGEDINFILE

Return

End of AGEIN(TCF) Process

AGEINTEST

STRUCTUREDENGLISH DESCRIPTION

This function accepts input argument TRACK FILE and returns a

Boolean flag = true if agein can occur, false otherwise.

TRACKFILE can be aged_in (return value true) if

It is not already aged in
[ TRACKFILE.TPTLP is -null I and

- Either: It has been seen the required number of times
[ TRACKFILE. ACINT > = AGEDINCOUNT( SENSOR )]

or: Its lethality estimate is sufficiently large

[ TRACKFILE.TPRIO > = AGEINLETHALITY ( SENSOR )]

where SENSOR is TRACKFILE.SIPDATA.SENSORID

and AGE IN COUNT, AGE IN LETHALITY are SENSOR INDEXed arrays
in the STATIC_ DATABASE.

End AGEINTEST subprocess.
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TESTWARNINGS

STRUCTUREDENGLISH DESCRIPTION

SUMMARY: TEST WARNINGS is a function whose input argument, CORRL
FILE, is pointer to a TCF representing a correlated ob-
ject. It returns a warning of type REAC.TYPES.WARNINGS
which may take one of the following values:

NULL WARNING
ILLUMINATED
HIND CLOSING
SCOUT NEARBY
UNIDENTIFIEDOBJECTCLOSING

The selection of which of these warnings to post is based
on an analysis of CORRL FILE's motion history contained
in the TCF history fields HISCOUNT, YOUNGEST and SIGHT-
ING. (These should be reviewed in Section B and under
the COUNT UP subprocess of CORRELATE in Paragraph C.4.d.)
This analysis is done by an internally defined function
MOTION HISTORY which also accepts CORRL FILE as its input
argument and returns a value of locally--defined type
MOTIONSTATUS, taking one of the values:

INDETERMINATE
AWAY
CLOSING
HOVERING

MOTION HISTORY is a long and somewhat laborious routine
which Ts better described by summarization than elabora-
tion of its logical structure. This will be done after
the logic of TESTWARNINGS proper.

These warnings are concerned with NIS-detectable and other objects
which can be detected by range-measuring sensors. Therefore, we
are interested in this correlated object if the sensors that
detected it include at least one range-measurer. A further cri-
terion is that the correlated object must have a full SIGHTING
array (NHIST = 5 entries):

If CORRL FILE.RANGERS = 0 or CORRL FILE.HISCOUNT < NHIST,
then Goto NULLRETURN (whence a NULLWARNING will be returned)
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Otherwise, we call MOTIONHISTORY(CORRLFILE) and use its returned

value in a case statement:

Case MOTIONHISTORY (CORRLFILE) is:

when HOVERING -- We are interested in knowing if the hovering
object is illuminated as:

If CORRL FILE.GUIDERS = 0
then Goto NULL RETURN
else Return ILLUMINATED

when CLOSING -- We want to post different warnings depending
on whether NIS is involved and within NIS,

yet other warnings depending on the subspecies that the
NIS sensor is able to distinguish. The first thing that
must be done is to find out if NIS is involved:

Set NISFOUND, a Boolean flag, to false

Let CITEM be the COR PTR to the first link of the chain of
COR RECs that record-the TTFs belonging to this correlated
object: CITEM: = CORRLFILE.CORFIRST

Repeat the following loop until one of its exit conditions
is met:
Set NIS-FOUND to true if

CITEM.CORITEM.SIPDATA.SENSORID = NIS.

Exit if NIS-FOUND is true

Exit when the pointer to the next link (CITEM.NEXT) is null

Otherwise, set CITEM to CITEM.NEXT

End loop

-- REMARK: This determination could be done more simply in
a future version by adding a Boolean flag, say
IS NIS, to the TCF REC definition and setting
this to true in the COUNT UP subprocess of
CORRELATE when a newly correlated TTF comes from
NIS.

At this point NIS-FOUND has its proper value and can be tested:

If NIS FOUND is still false
then Return UNIDENTIFIEDOBJECTCLOSING
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Otherwise, we are dealing with a closing NIS-detectee, and
CITEM.COR ITEM points to the TTF whose sensor is NIS. The
rest of the analysis is concerned with the emitter subtype
that the NIS sensor can distinguish. For the sake of this
paradigmatic alogrithm we have assumed that these subtypes
are

FRIEND HELl
ATTACK7HELI (assumed to be a HIND)
SCOUTHELI

Set MITTER from CITEM.CORITEM.SIPDATA.EMITTER

If MITTER = FRIEND HELl
then Goto NULLRETURN

At this point, we have either an ATTACK or a SCOUT HELl. We
need to know if the object is close enough to warrant the
posting of a warning. First, we dip into the history fields
of the correlated object to get the range of the most recent
SIGHTING:

DISTANCE := CORRLFIL.SIGHTING( CORRLFILE.YOUNGEST ).RNGE

Then, we compare this distance to the relevant warning ranges:

If MITTER = SCOUT HELl and
DISTANCE <= SCOUT HELl WARNING-RANGE [*]

then Return SCOUTNEARBY -

orif MITTER = ATTACK HELl and
DISTANCE <= ATTACH HELl WARNINGRANGE [*]
then Return HINDCLOSING

else Goto NULLRETURN

[*] These are items in the STATICDATABASE

When any other value of MOTIONSTATUS is returned

Goto NULL RETURN

End of case statement.

NULLRETURN: Return NULLWARNING

Formal end of TESTWARNINGS logic
-------------------------------------
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MOTIONHISTORY SUMMARY: The declaration of HOVERING is decided
first, on the basis of a clustering

analysis. If the difference between the maximum and the minimum
range is less than a certain range tolerance, AND if the difference
between the maximum and maximum azimuth (taking cognizance of wrap_
around) is less than a certain azimuth tolerance, THEN return a
value of HOVERING.

Otherwise, convert the azimuth/range coordinates to Cartesian coor-
dinates and attempt to fit a straight line to these points. If the
fit is bad, return a value of INDETERMINATE. If the points are
collinear, we compute DEL RNGE as the difference between the most
recent and the oldest range in the SIGHTING array. Then, assuming
that TOLRG is a positive range tolerance, we declare the outcome
as follows:

If DELRNGE < -TOLRG, then Return CLOSING

Orif DELRNGE > TOLRG, then Return AWAY

Else Return INDETERMINATE

End TESTWARNINGS subprocess.

CREATEPTL(TTF)

STRUCTUREDENGLISH DESCRIPTION

Make TRACK FILE point to AGED IN FILE:
TRACKFILE.TPTLP: = AGEDINFILE

Make AGED IN FILE point to TRACK FILE:
AGEDINFILE.PTTFP: = TRACK-FILE.

Set up the AGED IN FILE time and priority fields:
AGED IN FTLE.PTOA: = TRACK FILE.TTOA,
AGEDINFILE.PPRIO: = TRACK_ FILE.TPRIO

Insert AGED IN FILE at the head of the PTL time of arrival ring
(procedure PRIOTHLIST. INSERT)

Call PRIOTHLIST.RE PRIORITIZE to insert AGEDIN FILE in its proper
place in the PTL priority ring

End of CREATEPTL(TTF) Subprocess
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CREATEPTL (TCF)

STRUCTUREDENGLISH DESCRIPTION

Make CORRL FILE point to AGED IN FILE:
CORRL FILE.CPTLP: = AGEDINFILE

Make AGED IN FILE pont to CORRL FILE:
AGEDIN FILE.PTCFP: = CORR[ FILE

Set up the AGED IN FILE time and priority fields:
AGED IN FILE.PTOA: = CORRL FILE.CTOA
AGEDINFILE.PPRIO: = CORRL FILE.CPRIO

Insert AGED IN FILE at the head of the PTL time of arrival ring
(Procedure PRIOTHLIST. INSERT)

Call PRIOTHLIST.RE PRIORTIZE to insert AGEDINFILE in its proper
place in the PTL priority ring.

End of CREATEPTL(TCF) subprocess

5.2.3.6. The DECIDE REACTION Process. In a full-up Threat Resolution
Module (TRM) functioning within a realtime version of the entire VIDS so--ft-
ware suite, DECIDE REACTION will be a table-driven process that will make
recommendations to-the crew on how to react to the external objects cur-
rently perceived to be threatening the VIDS vehicle. The stage has been
set for this by the present DECIDE REACTION process which receives the same
input as the future process (the Prioritized_ Threat List -- PTL), but
makes no recommendations.

DECISION REACTION is called by THREAT RESOLUTION when the TRACK FILE cur-
rently being processed or the correlafted object to which it belongs
achieves agedin status. Thus, each call on DECIDE_ REACTION provides it
with a pointer to an AGED IN FILE. This pointer is placed in a record on a
chained list accessed via THREAT RESOLUTION output argument, OUTPUT PTR.
The REACTION MANAGEMENT process 6f the TESTBED will list those members of
this output chain which exhibits one of the non-trivial special warnings
affixed to the AGED IN FILE by the TEST WARNINGS subprocess of the AGE IN
process. Each AGEDINFILE thus exhibifed will have its STATUS field
changed to COMPLETED; this change of status will affect the FINDROOM sub-
process of TRACK and the AGEOUT module.
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5.2.3.7. The AGE OUT Module. The AGE OUT Module (AOM) is an independent
software module cTosely related to the-TRM that is called from the same
external software level that invokes the TRM itself.

The TRM and the AOM are file-oriented modules. The major function of the
TRM, as we have seen in the preceding paragraphs of this section, is to
create, update, and maintain a set of dynamic data files which collectively
represent a perception of the external battlefield situation. (The term
"file", as used here means a structured collection of data records stored
in the memory of the DMS computer, i.e., an internal file). The three
principal types of dynamic data files are the Threat-Track Files (TTFs)
created and maintained by the TRACK process, the Threat Correlation Files
(TCFs) created and maintained by the CORRELATE process, and the Priori-
tized-Threat List (PTL) created and maintained by the AGE IN process. The
function of the AOM is to remove old or spent files from the dynamic data
base. Thus, the relationship between the TRM and the AOM is that they
share the data structure and the procedures/functions which handle the
various data file types listed. The internal details of the dynamic data
base and its handlers are provided in Section A of this document.

The AGE OUT MODULE presented in structuredEnglish below is based on elimi-
nation of fTles that have not been seen for a period of time exceeding the
SENSOR INDEXed entry to the STATIC DATABASE array, AGE OUT TIME. A single
static-data item, MIN AGE OUTTIME7 represents the minTmum-over all sensors
of the entries in the AGE OUT TIME array. Age out should also be based on
taking cognizance of a fiTe's-reaction STATUS (NONE, WAITING, ACTIVE, or
COMPLETED), but this refinement has been postponed to a future version.

AGEOUTMODULE

STRUCTUREDENGLISH DESCRIPTION

First of all, if the Prioritized-Threat List is empty, there is
simply nothing to do here, so return. (Boolean value of
PRIOTHLIST.EMPTY is true).

Otherwise, we set up for a loop over the entire PTL in old to young
order, i.e., over the time of arrival ring:

THIS ITEM: = PRIOTHLIST.TAIL (PTL GLOBAL TOA)
LASTITEM: = PRIOTHLIST.HEAD (PTLGLOBALTOA)

Repeat the following loop until one of its exit conditions is met:

Set AGE to the difference between the present time (CLOCK
TIME) and the latesttimeseen of THISITEM (THISITEM.PTOA)

Exit when AGE < MIN AGE OUT TIME -- since we are moving in old
to young order, no other PTL item will be able to age-out
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Capture the pointer to the next oldest item now, before a
possible delete of THIS ITEM destroys the pointer:
NEXT ITEM: = THISITEM. (backward pointer for the time
ringT

Now, determine whether THIS ITEM agesin a correlated object or
an uncorrelated TTF. Except for testing the other exit
condition and moving on to the NEXT ITEM, the rest of
this loop is spent inside the then and else clauses of
this decision:

If THIS ITEM ages in a correlated object (THISITEM.PTCFP not
null), then Let COR FIL: = THIS ITEM.PTCFP

Set MAX-AGE: = zero-time (TZERO a constant from
TIME PACK).

Let CITEM be the COR PTR to the first link on the
chain of COR RECs that record the TTFs
belonging to this correlated object: CITEM:
= CORRLFILE.CORFIRST

Repeat the following loop until its exit condition
is met

Set TRIAL AGE to the AGE OUT TIME of the
sensor that pertains to the TTF pointed
to by the COR ITEM field of the CORREC
pointed to by-CITEM:
TRIAL AGE := AGE OUT TIME( CITEM.CORITEM.
SIPDA-TA.SENSORID) -

If TRIAL AGE > MAX AGE
then Reset MAXAGE-to the value of TRIALAGE

Exit when the pointer to the next link (CITEM.

NEXT is null

Otherwise, set CITEM to CITEM.NEXT

End loop

MAX AGE is now the maximum AGE OUT TIME associated with the corre-
lated object (COR FIL ). If tie AGE of THIS ITEM is > = MAX AGE,
we delete all associated TTFs, the TCF and tiie PTL in that order:

If AGE > = MAX-AGE

then Let CITEM be the COR PTR to the first link of the chain of
CORRECs that record the TTFs belonging to this
correlated object: CITEM: = CORRLFILE.CORFIRST
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Repeat the following loop until its exit condition is met

THREATFILE.DELETE the TTF pointed to by the COR ITEM
field of the COR REC pointed to by CITEM:
CITEM.CORITEM

Exit when the pointer to the next link (CITEM.NEXT)
is null

Otherwise, set CITEM to CITEM.NEXT

End loop

CORRELFILE.DELETE (COR FIL )
PRIOTHLIST.DELETE (THIS ITEM)

Else -- THISITEM ages_in an uncorrelated TTF

Set MAX AGE to the AGE OUT TIME of the sensor that
pertains to the TTT that THIS ITEM agesin:
MAXAGE: = AGEOUTTIME (THISITEM.PTTFP.SIPDATA.SENSORID)

If MAX AGE > = AGE (of THIS ITEM),
then THREATLIST.DELETE (THIS ITEM.PTTFP)

PRIOTHLIST.DELETE (THISITEM).

End of the major If statement inside this loop

Exit when THISITEM = LASTITEM

THIS ITEM: = NEXTITEM

End of Old toYoung loop over the PTL

End AGEOUT Module

5.2.3.8. Miscellaneous Packages. The TRM defines or shares with the test-
bed a number of packages which have shown up in the foregoing paragraphs
either peripherally or anonymously. Their contributions are nonetheless
important and need to be understood. This paragraph describes those packa-
ges not described in Section 5.2.1 or Section 5.4.

SETS PACK is a super_package that contains two packages, SENSORSETS and
EMITTER SETS. These two packages are 100% identical, differing only in the
Ada type of the set element, and could have been implemented using Ada
generics had been available in our compiler. Each package defines a set of
sensors/emitters as a vector of Boolean flags, one for each possible ele-
ment, that equal true if the element is present in the set, otherwise false.
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Each package also defines the null set, a full complement of set composi-
tion functions (union, difference, intersection, complementation), tests
for empty set and set membership, and a function for creating a set out of
a list of literal set elements. These capabilities are used to define the
SENSET and EMISET fields in the record element of the CAN BE CORRELATED
array in the STATICDATABASE and these fields are used exfensively in the
CORRELATE process.

5.2.3.9. Lessons Learned -- The Threat Resolution Module and Ada. Lessons
learned in the application of Ada to the design of the dynamic and static
data bases were given earlier in Sections 5.2.1.6 and 5.2.2.3, respec-
tively. These concluding remarks emphasize these again by reference and
add to them sundry observations:

In developing the TRM we experienced at every turn problems connected with
missing features or incomplete features. At first, we simply devised
workarounds, and went on our way. After a while, we learned to insert
"KLUDGE" notices directly into the comments to mark places where we were
forced to provide workarounds. Thus, we have laid down an indicative, if
incomplete, record of these difficulties. Looking for and reading these
KLUDGE notices is worthwhile.

The Ada UNCHECKEDCONVERSION feature was useful in several places. One
such place is in the dynamic database packages. Consider THREATFILE which
deals with TTF blocks: the only TTF block pointer fields which are not ele-
ments of the ring pointer array, are pointers that point to TCF and PTL
blocks. How then to provide a pointer from keeping TTF blocks on the chain
of available blocks, without forcing an array indexing operation and with-
out providing a pointer field specifically for that purpose? The answer:
Use the TCF pointer as a TTF pointer via UNCHECKEDCONVERSION.

The invisible work that lies behind the development of the TRM and the
myriad cycles of testing, correlation, and recompilation could have been
simplified if we had been able to compile a package's body separately from
its specification. A host of aids that one expects in a mature compiler --
conditional compilation, for example, would have been useful.

The real lessons lie ahead as we move toward a real time design with a
fully validated compiler. We will face issues that the primitive state of
our compiler allowed us to ignore: space compression using representation
specifications, performance -- full checking or not, dynamic deallocation,
the numeric representation of data, and concurrent operation of tasks.

We may someday look back on the lessons we have learned here as our ele-
mentary school years; our higher education lies ahead.
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5.3. Code Generation Using Ada as the Programming Design Language.

For the development of the VIDS software, an Ada-based program design langu-
age (Ada-PDL) was used. This Ada-PDL consisted of Ada control structures,
type declarations and compound statements with English comments to specify
the processing requirements of each module. The control structures used
were the declarations for procedures, packages, and functions. Tasks were
not used because they were not fully developed in TeleSoft Ada. The com-
pound statements consist of the if, case and loop statements.

5.3.1. What was done. The Ada-PDL was used at all levels of the design
process. At the top level, the modules of the system and their external
interfaces were specified. Each module, except the main program module,
was defined as a package. The interfaces between modules were defined
using type declarations, global constants, and subprogram specifications.
No global variables were used. Comments were used to describe the purpose
of all objects declared in the specification. In the interface, all exter-
nal properties of the package are fully defined. The top level design
could be compiled for interface verification.

During the detail design phase, we defined the implementation of the exter-
nal subprograms. In the bodies for the subprograms, the steps to be done
were outlined using compound statements and structured English comments.
We avoided premature coding but did use subprogram calls to indicate trans-
fers to other subroutines. This showed how the parts of the system fit to-
gether. Since the interfaces were fully defined, we determined exactly
what information was required and what information was returned. If it
became apparent that more information was required by a particular module,
the appropriate changes were made to the intertree and the interface was
recompiled. At this time, additional modules were defined consisting of
routines which are used by some modules at a local level.

For the coding phase, we took the detail design and filled in the Ada code
required to do the steps described in the comments. Further implementation
decisions were made but we avoided all changes to the interfaces unless no
other alternative was available.

5.3.2. What Ada Features Were Used and How.

5.3.2.1. Packages and Subprograms. Packages were used to form separately
compiled program modules which were used as building blocks to piece the
system together. We used packages for three applications.

The first was to form a collection of commonly used data types and con-
stants. This enabled us to form a library of terms used throughout the
system. One use of the constant declared in these packages was to define
the range limits for type definitions. Modification to the limits became a
simple matter of changing the constant. All references to the limits were
by means of the constants so only one change was required for modifica-
tions. We did not use packages to declare global variables. This elimina-
tes any questions about the accuracy of the values of global variables.
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Another use of packages was to form groups of related programs. Only the
main operating executive was a separately compiled procedure. The major
processing modules for the testbed (the TRM, the CLOCK MANAGER...) were de-
fined as procedures in a library package. An implementation restriction of
Ada required this design approach. Other library packages were defined for
subprograms used by the testbed modules. Each process was broken down into
smaller components until the simplest procedures were created. They were
then grouped together to form library packages. The library packages were
kept small with 100200 lines of code. This was done to reduce compile and
debug times.

The third application of packages was to define abstract data types and the
functions which act on these types. An example of this application is the
package to define time. The unit of measure for time is defined by the
type TIME. Functions for adding to time, multiplying time by a number and
to tell time were all defined as part of the same package. However, due to
an implementation restriction, we were not able to use the privacy feature
of Ada packages. So, we were unable to protect time variables from misuse.
We wanted to declare a deferred constant for time TZERO but were unable to
because deferred constants were not used in TeleSoft Ada at the time of
this research. This restriction did not impede the development, it just
made the code less structured.

Packages were a valuable tool for data and information hiding. We were able
to hide the implementations of the external procedure from the user. We
were also able to hide the implementation of the data structure and thus
control all access to the data by means of the external procedures declared
for that structure. This provided us with a secure database without re-
quiring extensive security checks for each access request.

5.3.2.2. Tasks. Tasks were not used in this development for several
reasons. TeleSoft Ada did not fully implement all tasking features. It
excludes entry familes and task types. These are two very important
features of Ada. Another reason to reject tasking is the scheduling algo-
rithm for the execution of tasks. A task would have full control of the
CPU time until an event such as a rendevous occurs. This means that tasks
do not really operate in parallel and one task could monopolize the com-
puter. We must study the feature before we have to rely on it in the
system. Since the emphasis of this effort was to test the algorithms
employed in the TRM, and these algorithms could be transferred to a task
implementation, we postponed the use of Ada tasking to a later development.
We foresee a need for full tasking abilities in further development of the
VIDS-FDM.

5.3.2.3. Input/Output. The interface of the VIDS testbed and the environ-
ment model was through static data files. The environment model is exe-
cuted first to create a data file of Sensor Input Packs (SIPs) for each
sensor. The package SIPI/O in the testbed then reads these files and at
the appropriate time will send the SIP to the TRM. SIP I/O is the only
package in the testbed to access the SIP files. This interface requires
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use of the Input/Output features of Ada. Because of the way by which we
access the data files, we used the DIRECT 10 package exclusively. This
enables us to read the files starting at any location in the file.

5.3.2.4. Other Features. One disadvantage of strong typing is illustrated
by the lack of generics. Because each type is different, we had to write
separate routines for objects of different, but similar, types. For ex-
ample, a routine to add a component to a list would have to be written for
each type of list. A general purpose generic routine could have been em-
ployed had this ability been provided in the compiler.

Variant records were restrictive because we had to know the exact variation
for all objects declared. This eliminates the possibility of a local
general purpose variable of the variant type in a subroutine. There are
times when a routine should operate on objects and not be concerned with
the exact variation. Generics may be the answer for this problem.

Generics are a valuable feature of Ada which can greatly simplify code.
The lack of this feature reduced the convenience and value of other Ada
features. A large portion of source code could have been eliminated if we
had been able to declare program templates.

The package feature is a convenient way of breaking code into manageable
portions. Use selected component notation when referencing components of a
package. Avoid the use statement except for the most obvious cases at the
lowest level of code. This requires more typing and longer references but
it avoids confusion during the debugging in a large system. A programmer
intimately familiar with a code module may be able to keep all the names
straight but after a time, even this programmer will forget where something
was defined. Also, selected component notation enables a person new to the
code to more quickly understand the code. Avoiding the use statement is
unpopular. In the long run, however, the advantages far outweigh the dis-
advantages.

Exceptions can be a source of confusion when the program bombs on an un-
handled exception. It was best to put an exception handler in all sub-
programs and packages. The handler would identify the area where the
exception was raised. We used the pragma SOURCE INFO and the procedure
SYSTEM.REPORT ERROR to identify which exception -was raised. This was
valuable during the debugging stage. We also enclosed all input and output
requests with a block containing an exception handler. All problems that
surfaced during the I/O process were handled locally and we could restart
the I/O request as needed.

Some of the predefined exceptions covered too wide a range of errors so
that identifyihg a particular mistake was not always easy. The rules for
propagation are complex and could confuse a beginning programmer. The pro-
pagation of an exception could also add some confusion to the process of
determining what error was committed and where it occurred.
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5.3.3. Difficulties Encountered. The difficulties encountered during
development were frequently due to implementation restrictions of the par-
tial compiler. However, these difficulties were identified early and the
design was structured around the restrictions so that when it came time to
code the design, elaborate workarounds were not required. The most common
difficulty encountered is the lack of a feature which would have simplified
the problem. Sometimes the lack of one feature would affect the use of
another. Full data abstraction was not possible because deferred constants
were not provided in the compiler. So, we could not hide the implementa-
tion of a type if we needed a constant for that type.

The area that required the most debugging time was with input/output. These
programs required an interface with the underlying run time operating
system. The system did not do the functions required adequately. If we
added to a pre-existing data file so that it required more space than had
been originally allocated, the operating system would return an error indi-
cator for the lack of space, even though space exists on another section of
memory.

The run time operating system should also swap out out unused portions of
code from RAM. We encountered difficulties when our program was so large
that it exceeded the space in RAM and overwrote portions of code. Since
not all code is always required, a paging technique could have been em-
ployed. Another problem that we encountered was finding the cause of this
error. We needed a debugger to access the code and determine how the code
was loaded.

The underlying development operating system must support Ada. We ran into
problems with the ROS system because the filer could not dynamically assign
new space at run time to the data files created in an Ada program. A full
set of development tools is required. Because the dependencies of modules
can become complex, a tool is required to keep track of the dependencies.
This tool must also make a distinction between the specification and body
of a package because dependent modules only need to be recompiled if the
specifications change.

5.3.4. Summarizing Ada as a PDL. Overall, Ada served our purpose very
well. We could use Ada at the highest level without crippling our design
effort. The transition through the design levels was smooth with minimal
retracing of steps as the design became more complete. Ada promotes a
black-box programming technique which enabled us to set aside modules whose
requirements were not fully known. It also facilitates dividing the modu-
les among several programmers. Each programmer can work independently of
the other programmers. One person manages the interfaces between modules
so that they grow and change, and the changes are done in an organized and
controlled manner. This provides order to the otherwise cumbersome re-
quirements of configuration management.
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Debugging and system integration are also facilitated by the Ada design.
The interface can be debugged separately from the implementation of the
modules. The interfaces are debugged first so each programmer knows from
the outset what information is available to his module and what information
he must supply. The bodies of the modules are debugged using special test
routines that provide a variety of possible data inputs. When the system
is finally put together, there is a higher confidence level in the indivi-
dual components of the system.

There were several advantages to using an Ada-based PDL. It enabled us to
fully use the features of Ada such as strong typing and separate compila-
tion. The Ada PDL provided a mechanism for describing and defining the
system which could easily be incorporated into code. We were able to des-
cribe the abstract concepts for the system using the Ada terminology and
later to code these abstract concepts directly. Our method of building the
modules through each stage of development provided us with a precommented
skeleton to be used for the coding of the software. This insures that the
code is well documented and is consistent with the design documents. The
Ada PDL fully supports a modular design approach so that modules which re-
quired more thought could be postponed until later. It also defined the
interfaces early in the development and kept them relatively rigid so that
the interface problems encountered during system integration were elimi-
nated.

As with any language, bad programming practices create bad programs. Care-
ful thought must be given to the definition of interfaces. This means that
more time and effort is spent at the top-level design phase. But because
so much care is taken, the next phases require less time. The applicabi-
lity of the various Ada features must be studied carefully to choose the
best implementation.

The Ada language is complex. A knowledge of a structured higher order
language such as PASCAL is valuable to the student of Ada. Ada can be
taught in a modular fashion starting with a basic subset of features which
is built on as the student progresses. The full language should be taught
and used. The training of Ada programmers is crucial because not only must
the syntax be taught, but the use of the language must be taught. FORTRAN
programming techniques are not appropriate in an Ada environment.

The result of well written Ada code by well trained Ada programmers is
easily maintainable code. Modifications become more simple because the
implementations of packages can be upgraded without affecting the overall
system. The program can grow over time. New abilities can be added to the
program easily by defining new modules. These new modules can use exist-
ing modules without requiring a recompilation of the entire program.
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5.4. Testbed Design.

5.4.1. Introduction. The testbed is a collection of separately compiled
modules. The TRM drops in to the testbed to form the test system. The
full system is shown in Figure 5-2. This section describes the library
packages and testbed software. The TRM and its support packages have been
described in Section 5-1.

5.4.2. Math Library. In order to carry out the functions of the TRM, it
is necessary to provide a library of mathematical functions. We adapted
the algorithms developed by William J. Cody, Jr., and William Waite. (See
References. ) The functions provided are briefly described in this sec-
tion.

5.4.2.1. MATH TYPES. MATH TYPES provides the definition of a VECTOR of
floating point numbers whose dimension is not specified. This definition
is used extensively to define tables in the STATIC DATABASE and to define
constants for the polynomial approximations to the few transcendental func-
tions used in the TRM (chiefly in the TRIG and STAT FUNC packages). MATH
TYPES also provides a function, POLY VAL, which computes the value of a
polynomial given the argument X and the VECTOR of coefficients.

5.4.2.2. ELEM FUNC. ELEM FUNC provides SQRT (square root) used in ANALYZE
MOTION, INDEX LOOKUP used by ASSESSLETHALITY, and NEW AVERAGE used by
UPDATETTF. All these users are in package TRACK_ AIDS.

5.4.2.3. TRIG FUNC. TRIG FUNC provies functions for the sine (SIN) and
cosine (COS) wTth argument-in degrees; two forms of arc-tangent with value
returned in radians or degrees; and constants for degrees <--> radian con-
version, and PI OVER TWO. SIN and COS are used in ANALYZE MOTION and in
the MOTIONHISTORY procedure of TESTWARNINGS (AGEIN).

5.4.2.4. STAT FUNC. STAT FUNC provides randomly distributed variables
from the U [O,T] and the N-[mu, sigma] probability density functions.
These are not used directly in the TRM are useful in devising various ad
hoc drivers for the TRM or parts thereof during development. These func-
tions were used by TESS to generate the SIP data.

5.4.3. Common Database Declarations. The functions of a number of packages
is to provide definitions of data types that are used in many places. These
packages are GEN TYPES, SIPPACK, REAC TYPES, and TRM TYPES. TRM TYPES has
been discussed extensively in Section -. 2.1. The remainder of-these
packages are described here.

5.4.3.1. GEN TYPES. GEN TYPES provides the basic definitions of the sen-
sor and emitter related einumeration types including SENSOR TYPES (with
subtype SENSOR INDEX) and EMITTER TYPES (with subtype EMITTER INDEX). It
also defines METERS, DEGREES, and RADIANS as subtypes of the predefined
floating point. The types of DEGREES and RADIANS should have been included
in MATH TYPES but the system design for GEN TYPES had already been com-
pleted before we realized the need for a math library.
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5.4.3.2. SIP PACK. SIP PACK provides the declarations for the input data.
The two major declarations are for the record types SIP RECORD and INPUT_
DATABLOCK. The SIPRECORD has been discussed in Secti~n 5.2.3.2.

The INPUT DATA BLOCK defines the components of a linked list of the input
data for The TRM. Each list component has two subcomponents: a SIP RECORD
and a pointer to the next input record. This linked list design enables us
to have a variable length list of input records. In theory, we could have
an infinite length list. However, in practice, this was not possible. A
limit of 30 input records was set. This is due to the lack of garbage
collection (reclaiming and collection of unused or deallocated space).

5.4.3.3. REAC TYPES. REAC TYPES provides the definition of the enumera-
tion types REACTION STATUS and WARNINGS and the THREAT INFORMATION BLOCK.
REACTION STATUS is used to provide a field in the PDL block that indicates
the reaction status of an object. WARNINGS was exhibited extensively in
Pages 91 through 94.

The THREAT INFORMATION BLOCK defines the components of a linked list to
contain the output data from the TRM. The components of the output data
consist of five elements:

SIP DATA : SIP RECORD
TRM TOA : TIME
PRIORITY : FLOAT
MESSAGE : WARNINGS
NEXTTHREAT : (Pointer to next output record)

We imposed a limit of 30 elements of this linked list due to the lack of
garbage collection.

5.4.4. TIME LIBRARY. The TIME LIBRARY consists of the single package
TIME PACK which defines the type TIME and the associated functions of TIME.
This is a poor design because the number of code lines in the package makes
it less maintainable. It would have been better to have broken it up into
smaller packages using the same design approach as the math library. How-
ever, it was not considered necessary to break up TIME PACK for this early
development. The following paragraph will describe TIM--E_PACK.

5.4.4.1. TIME PACK defines the type TIME used extensively throughout the
TRM and testbed and defines all the ancillary operations such as: addition
(+), subtraction (-), multiplicaton (*), and inequalities (<, <=, >=, >).
It also provides for converting time values to and from floating point,
and it provides facilities for keyboard input and display output of time
values. Further, it provides the function to increment a time to the next
whole second used by the OPERATIONAL EXECUTIVE. This functions to return
the whole seconds portion of the fractional seconds portion of a TIME.

5.4.5. Input Buffer Support Processes. The INPUT BUS SIMULATOR relies on
a library of support processes. These are subroutTnes-which have been iso-
lated for separate development. They include POLL PACK, SIP INPUT PACK,
BUFFERINFO, BUFFERSUPPORT, and BUFFERPACK, and are describ-ed in this
section.
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5.4.5.1. POLL PACK. POLL PACK defines the polling matrix for the sensors.
Also defined are two functions which return the sensor to be polled and the
sensor at the top of the matrix. POLL PACK defines procedures to insert a
sensor in the matrix, establish a default polling matrix, switch to the
next sensor in the list and print the poll table to the screen. The poll-
ing matrix is used as a circular linked list. A Boolean function is de-
fined to test if a new polling cycle has started.

5.4.5.2. SIP INPUT PACK. SIP INPUT PACK defines the routine to read SIPs
from the data-file on disk. IT also-maintains a Boolean array to indicate
when a file for a sensor is empty. Isolating this function enables us to
change the method of conveying SIPs to the testbed at some future date.

5.4.5.3. BUFFER INFO. BUFFERINFO defines the buffer type and the
buffers for each sensor. The size of the buffer is determined by an array
variable. Most buffers hold 100 elements. The read position in the buffer
is stored in an array and routines are provided to increment the read posi-
tion or reset it.

5.4.5.4. BUFFER SUPPORT. BUFFER SUPPORT provides the routines to clear
the buffer and to fill it. The buffer is filled once and SIPs are ex
tracted at each polling period. When the buffer is emptied, it is cleared
and refilled with the next sequence of SIPs.

5.4.5.5. BUFFER PACK. BUFFER PACK supplies the external interface to the
buffer. The routines in BUFFER INFO and BUFFER SUPPORT are only used by
BUFFER PACK. BUFFERPACK contains a routine READ BUFFER to read a single
SIP from a sensor's buffer, that occurs (has a time stamp) before a certain
time. This procedure is responsible for determining if a buffer is empty
and filling it if it is. This READBUFFER routine is called by the INPUT_
BUSSIMULATOR.

5.4.6. Input Bus Simulator. The INPUT BUS SIMULATOR declares a procedure,
READDATA, to read and fill the INPUT DATA BLOCK for transmission to the
TRM. The last SIP in the list is alwa-ys a-null SIP. If the buffer is
empty for the current sensor, a null SIP is returned. The sensor to be
polled and the polling time are determined by the OPERATIONAL EXECUTIVE and
passed to the procedure READDATA. A pointer to and INPUTDAT-ABLOCK is
returned.

5.4.7. Clock Time Manager. The CLOCK TIME MANAGER provides a simulated
clock. There are two external functions avaTlble: (1) a request for the
current clock time; and (2) a request to increment the current clock time.

Execution of the CLOCK TIME MANAGER is initiated by the OPERATIONAL EXECU-
TIVE. All requests for the current clock time will be handled through the
executive. This module will use the time declaration and functions pro-
vided by the TIMEMODULE.
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Only the clock manager can change the clock time. Time will be measured in
a time unit which must match with the declaration of type time. The clock
time will either be incremented by an even interval (1/100 of a time unit)
or it will be incremented to the next full time unit. The external inter-
face of the CLOCK MANAGER contains a function to return the current clock
time and two procedures to increment the current clock time. One of these
procedures will increment the clock time by an even interval; the other
will increment to the start of the next time unit. The even interval will
always be 1/100 of a time unit. This time unit will be consistent with the
units of measure in the Time-Module so that no conversions will be required.

5.4.8. Reaction Management. The REACTION MANAGEMENT package defines a
routine to display on the screen the current clock time and the THREAT
INFORMATION BLOCK. It is called after all the data from one sensor has
been processed for the current polling period. The current block time and
the THREAT INFORMATION BLOCK are supplied as input parameters by the
OPERATIONAL EXECUTIVE.- The routine could be easily modified to print the
output on the printer instead of the CRT screen but at this time the
printer is unavailable due to technical difficulties.

5.4.9. Debug Library. The DEBUG LIBRARY provides a number of utility
programs that are useful in the de-bugging of the code. Some of these
routines were so useful that the library remains a part of the testbed.
The packages in the Debug Library are ENUMIO, DEBUG-AIDS, PRINT PACK, and
DUMPPACK.

5.4.9.1. ENUM 10. ENUM 10 is a collection of procedures to print enumera-
tion literals Tor the enumeration types SENSORTYPES and EMITTERTYPES.

5.4.9.2. DEBUGAIDS. This package contains routines to print a message,
to pause execution and wait for user input before continuing, to convert a
character to a digit and to clear the screen.

5.4.9.3. PRINT PACK. PRINT PACK defines routines to format and print the
individual components of the-threat track data base.

5.4.9.4. DUMP PACK. DUMP PACK provides procedures for dumping the entire
contents of the TRM's dynamic database files: DUMP TFF, DUMP TCF, and
DUMP PTL. Each procedure accepts a single input argument specifying the
partTcular ring to be dumped. For example, calling DUMP TTF (TTF GLOBAL
PRIORITY) dumps (nicely formatted) all the TTF blocks in-descending prior-
ity order. It is used by the OPERATIONALEXECUTIVE to dump the files at
the end of each polling period.

5.4.10. Initialization Processes. These processes are called at the
start of the run to initialize the databases and system parameters. The
packages for these routines are SETUP and STDBMAINTENANCE.

5.4.10.1. SET UP. SET UP contains a routine to determine the length of
the test time interactively. It also defines an interactive routine to ask
if the user wishes to modify the static database in the TRM, and if so,
call the routines in STDBMAINTENANCE.
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5.4.10.2. STDB MAINTENANCE. This package contains the routines necessary
to interactively modify the static database used by the TRM.

5.4.11. Operational Executive. The OPERATIONAL EXECUTIVE is responsible
for controlling the system. It initiates all initialization code and calls
each of the testbed modules in turn. It is responsible for insuring the
proper execution of the TRM test run.

At the start of each run, the OPERATIONAL EXECUTIVE must establish the
polling matrix, determine the length of tTme for the test run, and ini-
tialize the TRM database. A procedure for modifying the database is also
called to allow the user to interactively modify the data.

The OPERATIONAL EXECUTIVE will read SIPs, send the SIPs to the TRM and
print the results until either all the SIPs have been read or the test time
has been exceeded. The subprograms for the INPUT BUS SIMULATOR, the TRM,
and REACTION MANAGEMENT are called in that order Tor each sensor for a
given polling period. Then the threat track database is dumped and the
time incremented to the start of the next poll period. This process is
repeated until the end of the test period or until there are no more SIPs.

5.5. Integration and Test Results

5.5.1. Introduction. This section discusses the test run results and the
integration of the testbed with the TRM. The Threat Environment Scenario
Simulator (TESS) was used to produce a test environment. This section will
first discuss the test environment, then the integration, and finally the
test run results.

5.5.2. Test Environment. TESS produced SIPs for a 3.00 second scenario
with eight active emitters. The environment is depicted graphically in
Figure 5-16. The threats are identified by number and their initial
positions are indicated on the table insert. Additional details about the
threats are given in Table 5-2.

The scenario includes two moving threats; number 2 and 3. Threat number 2
represents a loiter pattern over a 200-meter square. The SIPs are genera-
ted for each corner and the center of the square in an alternating pattern.
Threat number 3 is moving toward the tank at a rate of 68 meters per
second. All other threats are stationary. Threat number 8 is reported on
both sides of the North axis in order to test the logic of azimuth wrap-
around. Separate SIPs are generated for each sensor. All SIPs include
random measurement errors.

5.5.3. Testbed and TRM Integration.

5.5.3.1. Testbed/TRM Interface. The TRM consists of two external pro-
cedures which are called by the OPERATIONAL EXECUTIVE in the testbed. The
OPERATIONAL EXECUTIVE supplies SIPs to the TRM and receives the final re-
sult. The SIPs are sent in clusters at regular polling periods. All SIPs
active during the polling period for one sensor are sent in one group to
the TRM. After the TRM has processed these SIPs, new ones are collected
for the next sensor in the polling matrix.
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TABLE 5-2. TEST ENVIRONMENT THREAT INFORMATION

START STOP
POINT EMITTERS TIME TIME MOTION

1 Laser Beamrider;

Attack Helicopter; 0.85 1.32 Stationary

Millimeter Wave

2 Laser Designator; Loiter

Scout Helicopter; 0.75 2.50 200 meter

Millimeter Wave square

3 Laser Rangefinder; 0.10 1.51 Diagonal 68 meters/

Scout Helicopter second per quarter-

second

4 Laser Rangefinder 0.00 0.50 Stationary

5 Optical 0.50 1.00 Stationary

6 Optical 1.50 2.75 Stationary

7 Millimeter Wave 1.35 2.10 Stationary

8 Scout Helicopter; 2.25 2.75 Stationary

Millimeter Wave

111



The TRM processing results are reported after each call to the TRM by the
REACTION MANAGEMENT module. After all the sensors have been polled, the
threat tracking files are dumped. These files consist of the THREATTRACK
FILE, THREATCORRELATIONFILE, and PRIORITIZEDTHREATLIST.

5.5.3.2. Integration. The integration process went smoothly. Because of
the modularity of the system, we were able to integrate the separate com-
ponents of the testbed and the TRM independently of the TRM testbed inte-
gration. So, the only integration required was between the external
routines of the TRM and the testbed. This paragraph addresses the problems
encountered during integration. It also addresses the advantages of using
Ada as reflected during the integration effort.

a. Problems. The TRM and the testbed were developed separately by
separate programmers. A specially devised driver was used to test the TRM
before integration. In the testbed, a dummy module replaced the real TRM.
When it was time to integrate, it was a simple matter to replace this dummy
with the real TRM code. It does not require recompilation to do this sub-
stitution. However, due to the compiler deficiency, it was necessary for
us to regroup the source into larger packages (fewer modules) and recompile
the entire system. This effort took approximately five labor days. It was
by far the most serious integration problem that we encountered.

Other problems arose due to assumptions made in the TRM about the input
data that were not accurate. One such assumption concerns the TIME SENSED
field of the SIP. The value assigned to this field is the time that the
sensor reported the SIP to the testbed and the SIP was placed in the
buffer. The TRM expected the value to be the time that the input buffer
was read and the SIPs passed to the TRM. Initially, this time interpreta-
tion disparity caused the TRM to end abnormally. The sites requiring
correction were recognized and appropriate steps were taken. As the inte-
gration proceeded, sites where gross errors in the results were produced
were recognized and corrected. In the final version, a subtle and hard-to-
detect error remains; it is noted in the Results section.

b. Advantages of Ada During Integration. The modularity of Ada code
enabled us to substitute revised code without recompiling the whole system.
The linking of code modules occurs at run time so the most recent version
was always being used. We did encounter a problem executing code after a
large number of substitutions had taken place. To correct the problem we
had to recompile the entire testbed/TRM system. A complete system regen-
eration should be performed on a regular basis to avoid any such problems.

A further advantage of Ada modularity during integration was that it
generally enabled the integrators to localize errors to the package level
rapidly. This ability was enhanced by judicious use of Ada's superior ex-
ception handling capability.
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5.5.4. Test Run Results.

5.5.4.1. Introduction. The results reported here consist of comments on
a test run printout submitted with this report and whose pages are headed
as follows:

Oct 13 16:07 1984 Oct 23 testbed output page (pp)

where the symbol (pp) denotes a page number in the range of 1...35.

5.5.4.2. Overview of Results. This subsection briefly notes the abilities
of the TRM demonstrated by the printout -- what we have accomplished. It
also comments, in passing, on several TRM capabilities not shown and on the
time sorting error noted in handwriting on the printout.

The referenced printout shows the operation of the TRM upon 56 SIPs (Sensor
Input Packets) fed to it by the testbed over a simulated time period of
four seconds. The input is divided into three major bursts of 16, 25, and
15 SIPs with a priority-ordered dump of the dynamic data files occuring
after each burst. (A dump of these files also occurs before the first
burst, but shows, as expected, that each file is empty.) The dynamic data
files consist of the Threat Tracking Files (TTF), the Threat Correlation
Files (TCF) and the Prioritized Threat List (PTL -- also termed "Aged-In
Files"). It is chiefly upon these file dumps that we rely in stating the
following conclusions about the operation of the TRM.

a. The TRM is able to correctly discern a "new guy". This is shown by
the hand-annotated, one-to-one matchup between the input SIPs which are
followed by in-process messages that read

"MATCH: Return with FLAG = Genuine NG"

and the TTFs.

b. The TRM is able to correctly discern that an input SIP represents
something that has been seen before. Each such SIP is followed by an in-
process message that reads

"MATCH: REturn with FLAG = MATCH WOC"

where WOC denotes "without change." An audit of the "AGE IN COUNT" file of
each TTF shows that each input having been seen the correct number of times
-- once as a "GenuineNG" and subsequently as a "MatchWOC."

c. The TRM is able to correctly discern that an input SIP bears a close,
but not-quite-close-enough resemblance to an existing TTF. This occurs
once at input SIP number 28 which is followed by the in-process message

"MATCH: Return with FLAG = Possible NG"
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This state triggers software which attempts to answer the question: Is the
discrepancy due to motion? In this particular run, the answer returned is
"no," i.e., the apprent discrepancy is not a discrepancy at all, and the
track file and input SIP represent different objects -- the SIP is a "new
guy." Other runs have demonstrated the TRM's capability to reach the oppo-
site conclusion.

The TRM can also discern a fourth state in between the last two ("Match
WthC" -- with change), but this is not demonstrated on this particular run.

d. The TRM can do cross-sensor correlation, i.e., recognize that inputs
from different sensors come from the same location. This is noted by two
kinds of in-process messages:

"CORRELATE: New correlation file created"

"CORRELATE: Track File added to existing
correlation"

As noted elsewhere in this report, this correlation is based on azimuth
matching only and would have failed if the apparent correlated tracks had
differed in other measurable parameters.

e. The TRM is able to "age_in" both individual TTFs and TCFs according
to three rules:

o Lethality exceeds a minimum;
o Age In Count exceeds a minimum;
o A special warning flag is raised.

(Applies only to the correlation of TCFs).

The TRM can also handle the case wherein correlation occurs after the indi-
vidual TTFs which are being correlated have agedin. This is not demon-
strated in this particular run.

f. The TRM can correctly update all fields in the various files and to
maintain all files in their correct orders on their priority and azimuth
rings. The PTL is not correctly ordered on its time of arrival ring. This
is because the TRM was written under the expectation that SIPs would be
input with their TIME_ SENSED fields in non-decreasing order (as if they
were time stamped upon entry into the TRM), but the testbed supplies time
values for these fields which represent the times seen by the sensor
supplying the data, and the polling regime followed by the testbed allows
SIPs to violate time monotonicity. This can be corrected by supplying the
PRIOTHLIST package with a procedure to correctly insert PTLs in time order
on the time of arrival ring, and calling this procedure from each of the
two overlay- oT CREATEPTL (in AGEINPAK) in place of the currently coded
statements:

INSERT (AGED IN FILE, T OF ARR, BEFORE, P HEAD);
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The only consequence of this error is that the Age_Out Module will not work
correctly, but this module is not exercised by the current version of the
testbed.

5.5.4.3. Examination of Test Run Printout

a. A Quick Walk-Through. This subsection provides a brief and coarse
guide to the referenced printout:

Page 1-2: The 33 messages which begin "Elaborate.." are printed out
in the elaboration section of each of the combined TRM/Testbed packa-
ges (some are shared).

Page 2: The testbed's Operational Executive asks the user for some
information and the user responds.
Page 2: A dump of the three major dynamic files shows that they are

all empty.

Page 2-5: SIPs 1...16 are input.

Page 5-10: First dump to files:

pp 5-9: TTFs
pp 9-10: TCFs
pp 10: PTL (single entry)

Page 11-15: SIPs 17.. .41 are input, on p. 14, a brief excursion is
taken through REACMAN between SIPs 33 and 34.

Page 15-23: Second dump of files:

pp 15-20: TTFs
pp 20-22: TCFs
pp 22-23: PTLs

Page 23-26: SIPs 42-56 are put.

Page 26-35: Third and last dump of files:

pp 26-32: TTFs
pp 32-33: TCFs
pp 33-35: PTLs

b. Detailed Commentary on Results. This subsection provides detailed
commentary on places of interest in the printout.

Page 2: We note, with relief, that the very first SIP input is
declared to be a genuineNG (New Guy). As a matter of fact, five of
the first seven are also.
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Page 3: At SIP No. 7, we obtain our first correlation. Later
inspection of the first TTF and TCF dumps shows that this correlation
is between the object representing SIPs (1 ,3, 4) and that repre-
senting SIPs (7, 8, 9, 12).

Page 4: Two more fresh correlations are obtained; the cognizant SIPs
are hand-annotated on the printout.

Page 5: Two correlations are obtained which refer to already exist-
ing correlated objects.

Page 5: Dump of the TTFs. The number of TTFs equals the number of
"Genuine NGs" (10) found in the SIP input prior to the dump, and that
the summation of the AGE IN COUNT fields over these ten TTFs equals
the number of SIPs input thus far (16). The TTFs (as well as the TCFs
and PTLs) are in descending order on priority.

Page 12: A "Possible NG" is declard by the Match Subprocess at SIP
No. 28. The signficance of this declaration and the ensuing motion
analysis are explained in the annotation provided with the printout.

Page 15: The second dump of the files reflects the three additional
"new guys" discovered in the second burst of SIPs, and the summation
of the AGE IN COUNT fields is now 41. One of the three TCFs is now
agedin and tFis is because the correlated object is found to be
illuminating the VIDS vehicle; two individual TTFs have also aged_in
on the lethality rule.

Page 24: A new "Genuine NG" is discovered at SIP No. 46. The two
following SIPs match No.-46 and demonstrate that the match logic
correctly handles the wraparound of azimuth from 360 to 0 degrees.

Page 25: SIPs No. 54.. .56 reconfirm the remarks on Page 24; this
object also correctly correlates with (46, 47, 48).

Page 26: The third and final dump of the files is confirmed for
correctness by the same techniques used for the first two dumps (pp.
5, 15).

Page 34: Analysis of the PTL's time of arrival (T OF ARR) ring poin-
ters shows that time monotonicity is violated; inspection of the
second dump shows that it happened there as well. The cause and cure
of this problem are discussed above.
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GLOSSARY

DECLARATION - A declaration is the definition of an entity. The declara-
tion.will give the characteristics of the entity.

ENTITY - An entity is anything that can be named or denoted in a program.
Objects, types, values, program units, are all entities.

OBJECT - An object is a variable or a named constant. An object can denote
any kind of data element, whether a scalar value, a composite value, or a
value in an access type.

PACKAGE - A package is a program unit that is used to describe groups of
logically related types, objects, and subprograms whose inner workings are
concealed and protected from the user. It can consist of two parts: a
visible part and a private part.

Visible Part - The visible part of a package contains the entities that may
be used from outside the package.

Private Part - The private part of a package contains structural details
that are irrevelent to the user of the package, but that completes the spe-
cification of the visible entities.

PARAMETER - A parameter is one of the named entities associated with a
subprogram, entry, or generic program unit. A formal parameter is an iden-
tifier used to denote the named entity in the unit body. An actual para-
meter is the particular entity associated with the corresponding formal
parameter in a subprogram call, entry call, or generic instantiation. A
parameter mode specifies whether the parameter is used for input, output,
or input-output of data. A positional parameter is an actual parameter
passed in positional order. A named parameter is an actual parameter pased
bynaming the corresponding formal parameter.

SPECIFICATION - A specification defines the identifier of a pro-gram unit
and the parameters and interface requirements for other porgram units.

SUBPROGRAM - A subprogram is an executable program unit that is invoked by
a subprogram call. There are two forms of subprograms: procedures and
functions.

TYPE - A type characterizes a set of values and a set of operations appli-
cable to those values. The values are denoted by either literals or by
aggregates of the type and can be obtained as a result of operations.
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